【24h】

Multicore fibre technology - the road to multimode photonics

机译:多芯光纤技术-多模光子学之路

获取原文

摘要

For the past forty years, optical fibres have found widespread use in ground-based and space-based instruments. In most applications, these fibres are used in conjunction with conventional optics to transport light. But photonics offers a huge range of optical manipulations beyond light transport that were rarely exploited before 2001. The fundamental obstacle to the broader use of photonics is the difficulty of achieving photonic action in a multimode fibre. The first step towards a general solution was the invention of the photonic lantern in 2004 and the delivery of high-efficiency devices (< 1 dB loss) five years on. Multicore fibres (MCF), used in conjunction with lanterns, are now enabling an even bigger leap towards multimode photonics. Until recently, the single-moded cores in MCFs were not sufficiently uniform to achieve telecom (SMF-28) performance. Now that high-quality MCFs have been realized, we turn our attention to printing complex functions (e.g. Bragg gratings for OH suppression) into their N cores. Our first work in this direction used a Mach-Zehnder interferometer (near-field phase mask) but this approach was only adequate for N=7 MCFs as measured by the grating uniformity. We have now built a Sagnac interferometer that gives a three-fold increase in the depth of field sufficient to print across N≥127 cores. We achieved first light this year with our 500mW Sabre FRED laser. These are sophisticated and complex interferometers. We report on our progress to date and summarize our first-year goals which include multimode OH suppression fibres for the Anglo-Australian Telescope/PRAXIS instrument and the Discovery Channel Telescope/MOHSIS instrument under development at the University of Maryland.
机译:在过去的四十年中,光纤在地面和天基仪器中得到了广泛的应用。在大多数应用中,这些光纤与常规光学器件结合使用以传输光。但是,光子学提供了光传输以外的大量光学操作,这在2001年之前很少被利用。光子学广泛应用的根本障碍是难以在多模光纤中实现光子作用。迈向通用解决方案的第一步是2004年发明光子灯,并于五年后交付了高效率的设备(损耗小于1 dB)。多芯光纤(MCF)与灯笼结合使用,现在正朝着多模光子学迈进更大的一步。直到最近,MCF中的单模内核还不够均匀,无法实现电信(SMF-28)性能。现在已经实现了高质量的MCF,我们将注意力转向将复杂功能(例如用于OH抑制的布拉格光栅)印刷到它们的N核中。我们在该方向上的第一项工作是使用Mach-Zehnder干涉仪(近场相位掩模),但这种方法仅适用于N = 7的MCF(通过光栅均匀性进行测量)。现在,我们构建了一个Sagnac干涉仪,其景深增加了三倍,足以在N≥127个磁芯上进行打印。今年,我们用500mW的Sabre FRED激光器获得了第一束光。这些是复杂的复杂干涉仪。我们报告了迄今为止的进展,并总结了我们的第一年目标,其中包括马里兰大学正在开发的用于英澳望远镜/ PRAXIS仪器的多模OH抑制光纤和发现通道望远镜/ MOHSIS仪器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号