首页> 外文会议>ASME international mechanical engineering congress and exposition >NUMERICAL ANALYSIS OF LIQUID BREAKUP AND DROP GENERATION IN LOW VELOCITY JETS
【24h】

NUMERICAL ANALYSIS OF LIQUID BREAKUP AND DROP GENERATION IN LOW VELOCITY JETS

机译:低速射流中液体破裂和滴落产生的数值分析

获取原文

摘要

Biological sprays and aerodynamically assisted bio-jets are increasingly employed in treatment of living cells and organisms for applications in regenerative medicine, tissue repair, and advanced therapeutics. The liquid used in biological applications cover a wide range of viscosities and surface tensions. Determining conditions that achieve steady and uniform drop distribution for a range of properties of the liquid jet is critical in advancing biological applications. In this study, numerical simulations of jet breakup are carried out using a modified volume of fluid (VOF) approach to capture the interface. The interplay of viscosity and surface tension is studied by varying liquid properties. Simulations show that a high viscosity jet stretches and elongates before a liquid segment detaches. Based on the thickness of the liquid thread connecting the detaching drop to the main liquid stream, two fundamentally different modes of liquid pinch off have been predicted: thick-thin and thin-thick. In the thick-thin mode, the liquid jet has a growing drop at its edge. As this drop grows in size, the liquid stream stretches till the drop is pinched off the liquid stream. In the other mode in addition to the pinch off of drops from the jet, ligaments of liquid break off. The change in the breakup mode is primarily governed by the relative magnitude of the viscous force compared to surface tension with high viscous force leading to thin-thick liquid stretching and pinch off. Thick-thin stretching is seen to produce slow moving satellite drops that merge backwards with the oncoming drop, while thin-thick stretching is noticed to result in faster satellite drops that merge forwards. On the other hand when surface tension force dominates, non-merging satellite drops are formed that move with a speed close to the primary drops.
机译:生物喷雾剂和空气动力辅助生物喷射器越来越多地用于活细胞和生物体的治疗,用于再生医学,组织修复和先进的治疗方法。生物应用中使用的液体具有广泛的粘度和表面张力。确定对于液体射流的一系列特性实现稳定且均匀的液滴分布的条件对于推进生物学应用至关重要。在这项研究中,使用改进的流体体积(VOF)方法来捕获界面,从而进行了射流破裂的数值模拟。通过改变液体性质来研究粘度和表面张力之间的相互作用。模拟表明,高粘度射流在液体段分离之前会拉伸并伸长。基于将分离液滴连接至主液流的液线的粗细,已预测出两种根本不同的液夹模式:粗细和细密。在浓稀模式下,液体射流在其边缘处的液滴逐渐增大。随着液滴尺寸的增加,液体流会一直延伸,直到液滴被液体流挤压为止。在另一种模式中,除了夹住喷射流中的液滴外,还会断裂液体韧带。相比于具有高粘性力的表面张力,粘性模式的相对大小主要决定了破裂模式的变化,从而导致了稀薄的液体拉伸和收缩。可以看到,厚的拉伸会产生缓慢移动的卫星滴,并与即将到来的液滴向后合并,而薄的拉伸会导致较快的卫星滴向前合并。另一方面,当表面张力占主导时,会形成非合并的卫星液滴,其移动速度接近初级液滴。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号