首页> 外文会议>ASME Fluids Engineering Division summer meeting >FURTHER DEVELOPMENTS IN NUMERICAL SIMULATIONS OF WIND TURBINE FLOWS USING THE ACTUATOR LINE METHOD
【24h】

FURTHER DEVELOPMENTS IN NUMERICAL SIMULATIONS OF WIND TURBINE FLOWS USING THE ACTUATOR LINE METHOD

机译:风轮流数值模拟的驱动线法的进一步发展

获取原文

摘要

Current large-scale wind turbine installations are sited using layouts based on site topology, real estate costs and restrictions, and turbine power output. Existing optimization programs attempt to site multiple turbines based on simple geometric turbine wake models, which typically overestimate individual turbine output. In addition, advanced Computational Fluid Dynamics (CFD) modeling of individual turbine wake fields have revealed complex flow patterns and "wake meandering" which have not been taken into account in current optimization and flow field models. CFD models of entire turbine fields have had limited application because of the enormous compute resources required; limitations of the simplified turbine models used which do not provide high resolution results in the wake field; and the lack of efforts to adapt the results of complex CFD output to analytical models which can be incorporated into wind turbine siting optimization routines. In this paper, we report on our efforts to simulate flow past wind turbines using a new adaptation of the Actuator Line (AL) method for turbine blade modeling. This method creates a geometric representation of each rotating turbine blade. Grid points in the CFD flow field are selected within the outline of the blades and near downstream planes, and the aerodynamic forces are calculated using traditional blade element equations. The forces are distributed using an automated routine which dynamically determines the application area based on the number of applied grid points at each time step. Turbine blades are rotated in time with progressing CFD field calculations. This method distributes blade forces without using a geometric distribution function used in other recent research. Blade forces are then input as body forces into the Navier Stokes equations in the host CFD program. A Smagorisnky LES turbulence model is employed to model turbulent effects. To improve accuracy and reduce computing power requirements, the advanced parallel CFD code, NEK5000, is used in this study. FORTRAN subroutines are written to generate the actuator line and blade geometry, and to calculate the blade lift and drag forces. These subroutines are then linked to the solver source code and compiled. Details of the actuator line setup and calculations, LES turbulence model, CFD flow simulation setup, and results from current turbine runs will be presented. Current results are consistent with published research. A roadmap to ongoing development will also be discussed.
机译:当前的大型风力涡轮机安装使用的布局基于站点拓扑,不动产成本和限制以及涡轮机功率输出。现有的优化程序试图基于简单的几何涡轮机尾流模型来定位多个涡轮机,这些模型通常会高估单个涡轮机的输出。此外,单个涡轮机尾流场的高级计算流体动力学(CFD)建模显示出复杂的流型和“尾流曲折”,这在当前的优化和流场模型中并未考虑在内。由于需要大量的计算资源,整个涡轮机领域的CFD模型的应用受到限制。使用的简化涡轮机模型的局限性在尾流场中无法提供高分辨率结果;并且缺乏将复杂的CFD输出结果调整为可用于风力发电机选址优化例程的分析模型的努力。在本文中,我们报告了我们使用新的执行器线(AL)方法对风力涡轮机叶片建模进行模拟来模拟通过风力涡轮机的气流的努力。该方法创建了每个旋转涡轮叶片的几何表示。在叶片轮廓内和下游平面附近选择CFD流场中的网格点,并使用传统的叶片单元方程计算空气动力。使用自动例程来分配力,该例程根据每个时间步骤上施加的网格点数动态确定施加区域。随着CFD现场计算的进行,涡轮机叶片会及时旋转。此方法无需使用其他最新研究中使用的几何分布函数即可分配叶片力。然后,将叶片力作为体力输入到主机CFD程序中的Navier Stokes方程中。使用Smagorisnky LES湍流模型来模拟湍流效应。为了提高准确性并降低计算能力要求,本研究中使用了高级并行CFD代码NEK5000。编写FORTRAN子例程以生成执行器线和叶片几何形状,并计算叶片升力和阻力。然后将这些子例程链接到求解器源代码并进行编译。将介绍执行器管线设置和计算,LES湍流模型,CFD流量模拟设置以及当前涡轮机运行的结果的详细信息。目前的结果与已发表的研究一致。还将讨论正在进行的开发路线图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号