首页> 外文会议>ASME heat transfer conference >ANALYSIS OF THE MOMENTUM TRANSPORT BOUNDARY CONDITIONS AT A FLUID-POROUS INTERFACE
【24h】

ANALYSIS OF THE MOMENTUM TRANSPORT BOUNDARY CONDITIONS AT A FLUID-POROUS INTERFACE

机译:流体-多孔界面动量传输边界条件的分析

获取原文

摘要

The porous composite system is consists of porous medium and free fluid layer, which has extensive industrial applications. The study method for the flow field in the porous composite system includes the microscopic, mesoscopic and macroscopic approaches. When the two-domain approach is adopted, which is one of the macroscopic methods, the momentum transport boundary conditions at the interface between porous medium and free fluid layer is essential to analyze the flow field in the system. When Darcy equation is adopted to describe the flow in porous region, the Beavers-Joseph (BJ) interface condition can be used. When Darcy-Brinkman equation is adopted to describe the flow in porous region, the stress-jump (Ochoa-Tapia & Whitaker: OTW) interface condition can be used. To utilize these interface conditions, the velocity slip coefficient used in the BJ interface condition and the stress-jump coefficient used in the OTW interface condition should be specified. In this paper, a brush configuration is approximately treated as the equivalent porous media in the composite system. A numerical simulation method is used to obtain the microscopic solution for the flow in the system based on the Navier-Stokes equation applied in whole system, and an analytical method is used to obtain the corresponding macroscopic solution based on the two-domain approach. By comparing the microscopic and macroscopic solutions, the velocity slip coefficient and the stress-jump coefficient are determined since they can be treated as adjustable parameters. The influence of different flow types, including Poiseuille flow, Couette flow, and free boundary flow, are investigated. Also the impact of free fluid layer thickness and porous structure on the velocity slip coefficient and the stress-jump coefficient are discussed. The results indicate that, the velocity slip coefficient and the stress-jump coefficient are not only the parameters which depend on the porous structure, but also depend on the thickness of free fluid layer and flow type. When the thickness of free fluid layer is lower than a certain value, the impact of free fluid layer thickness on the velocity slip coefficient and the stress-jump coefficient is much obvious. In addition, when the thickness of free fluid layer is small, these coefficients are found to be dependent on the flow type. However, when the thickness of free fluid layer is large, the stress jump coefficient is independent of the thickness of free fluid layer and the flow type. Thus the stress jump coefficient obtained for a specific case can be used to predict velocity for different flow types and different thickness of free fluid layers.
机译:多孔复合材料系统由多孔介质和自由流体层组成,具有广泛的工业应用。多孔复合体系中流场的研究方法包括微观,介观和宏观方法。当采用宏观方法之一的二域方法时,在多孔介质与自由流体层之间的界面处的动量传输边界条件对于分析系统中的流场是必不可少的。当采用Darcy方程描述多孔区域的流动时,可以使用Beavers-Joseph(BJ)界面条件。当采用Darcy-Brinkman方程描述多孔区域中的流动时,可以使用应力跃变(Ochoa-Tapia&Whitaker:OTW)界面条件。为了利用这些界面条件,应指定在BJ界面条件下使用的速度滑移系数和在OTW界面条件下使用的应力跳跃系数。在本文中,将刷子配置近似地视为复合系统中的等效多孔介质。基于整个系统应用的Navier-Stokes方程,采用数值模拟的方法获得系统中流动的微观解,基于二域方法,采用解析方法获得相应的宏观解。通过比较微观和宏观解决方案,可以确定速度滑移系数和应力跳跃系数,因为它们可以作为可调参数来处理。研究了包括Poiseuille流,Couette流和自由边界流在内的不同流类型的影响。还讨论了自由流体层厚度和多孔结构对速度滑移系数和应力跳跃系数的影响。结果表明,速度滑移系数和应力跳跃系数不仅是取决于多孔结构的参数,而且还取决于自由流体层的厚度和流动类型。当自由流体层的厚度小于一定值时,自由流体层的厚度对速度滑移系数和应力跳跃系数的影响就非常明显。另外,当自由流体层的厚度较小时,发现这些系数取决于流动类型。然而,当自由流体层的厚度较大时,应力跳跃系数与自由流体层的厚度和流动类型无关。因此,在特定情况下获得的应力跳跃系数可用于预测不同流体类型和不同自由流体层厚度的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号