首页> 外文会议>ASME heat transfer conference >NUMERICAL SIMULATION OF THE CONVECTION IN A NON-HOMOGENEOUS LID-DRIVEN SQUARE CAVITY SUBJECTED TO A GRAVITATIONAL STABLE CONDITION
【24h】

NUMERICAL SIMULATION OF THE CONVECTION IN A NON-HOMOGENEOUS LID-DRIVEN SQUARE CAVITY SUBJECTED TO A GRAVITATIONAL STABLE CONDITION

机译:重力稳定条件下非均质LID驱动方腔中对流的数值模拟

获取原文

摘要

The lid-driven flow inside a porous square cavity is numerically simulated. The porous media is modelled on the microscopic scale (heterogeneous porous medium) with a square heat conductive single block representing the solid constituent. Conversely, the fluid relies between the block and the cavity surfaces. A vertical positive thermal gradient, obtained by keeping the sliding-lid temperature T_H higher than the base one T_C, aligned with the gravity force enables a gravitational stable condition where the buoyant-induced flow does not occurs spontaneously. Instead, the flow comes about as the cavity top surface slides with constant velocity. Conservation equations are applied separately for each constituent and are coupled by boundary conditions at the fluid to solid interface (block surface). The Boussinesq-Oberbeck approximation accounts for the buoyant effects. The equations are solved via the finite volume method with the use of the SIMPLE algorithm for the pressure-velocity coupling and QUICK interpolation scheme for the treatment of the advection terms. The aim of the present work is to investigate how variations on the flow parameters and the block size affect the thermal process throughout the cavity. A top lid velocity based Reynolds number evaluates the intensity of the forced convection process while the Grashof number is associated with the intensity of buoyancy. The flow parameters cover only the laminar regime, such as 10~2≤Re≤10~3 and 10~3≤Gr≤10~7. The Re and the Gr numbers are also analyzed by the means of the Richardson number, Ri, which accounts the relative predominance of buoyancy over the inertia effects. Moreover, a clear fluid cavity and enclosure configurations with three different block dimensions, namely 5=0.3, 0.6 and 0.9, are simulated. The heat transfer across the cavity can be characterized as a competitive effect, since the flow is hindered as the buoyancy effect rises. Results show that an increase in Re, or decrease in Gr, enhances the heat transfer, revealing a convection dominant regime. Alternatively, an increase in Gr, or a decrease in Re, leads the fluid to a stagnant-prone condition where a conduction dominant regime is verified. Thus, the surface-average Nusselt number, Nu_(av), tends to unity as the flow is confined to the adjacency of the sliding-lid. The placement of the single block in the cavity can enhance or hinder the heat transferred, depending on the flow regime. For instance, if a B=0.6 block is inserted in the presence of a convection dominant regime, the Nu_(av) is increased. Conversely, if the fluid is quiescent, a B=0.6 block alters the flow path and the Nu_(av) decreases. Intense blockage effects are observed for larger values of B since the block interferes on the flow more significantly. For a convection dominant regime, for instance, a B=0.9 block causes the Nu_(av) to drop. However, in the presence of stagnant fluid, the same obstacle forces the flow to circumvent it. Thus, the Nu_(av), number increases, indicating that heat transfer mode returns to a convective pattern.
机译:对多孔方腔内部盖子驱动的流动进行了数值模拟。多孔介质是在微观尺度上建模的(异质多孔介质),带有代表固体成分的方形导热单块。相反,流体依赖于块和腔体表面之间。通过保持滑动盖温度T_H高于基部温度T_C而获得的垂直正热梯度与重力对齐,可以实现重力稳定状态,在这种情况下不会自发地产生浮力引起的流动。而是在型腔顶面以恒定速度滑动时产生流动。守恒方程式分别适用于每种成分,并通过边界条件在流体与固体界面(块体表面)之间耦合。 Boussinesq-Oberbeck近似说明了浮力效应。通过使用有限体积方法求解方程,并使用SIMPLE算法进行压力-速度耦合,并使用QUICK插值方案处理对流项。本工作的目的是研究流量参数和块尺寸的变化如何影响整个型腔的热过程。基于顶盖速度的雷诺数评估强制对流过程的强度,而格拉斯霍夫数与浮力强度相关。流动参数仅覆盖层流状态,如10〜2≤Re≤10〜3和10〜3≤Gr≤10〜7。还通过理查森数Ri来分析Re和Gr数,该数说明了浮力相对于惯性效应的相对优势。此外,模拟了具有三个不同块尺寸(即5 = 0.3、0.6和0.9)的透明流体腔和外壳配置。由于随着浮力作用的增加而阻碍了流动,因此跨腔的热传递可以被描述为竞争作用。结果表明,Re的增加或Gr的减少会增强传热,从而显示出对流占优状态。可选地,Gr的增加或Re的减少会导致流体进入容易停滞的状态,在这种情况下可以确认传导占主导地位。因此,随着流动被限制在滑动盖的附近,表面平均努塞尔数Nu_(av)趋向于统一。取决于流态,单个块在腔中的放置会增强或阻碍所传递的热量。例如,如果在对流主导状态下插入B = 0.6块,则Nu_(av)增加。相反,如果流体处于静止状态,则B = 0.6块会更改流路,并且Nu_(av)会减小。对于较大的B值,会观察到强烈的阻塞效应,因为阻塞对流动的影响更大。例如,对于对流占优状态,B = 0.9会导致Nu_(av)下降。但是,在流体停滞的情况下,相同的障碍会迫使流体绕开。因此,Nu_(av)的数量增加,表明传热模式返回到对流模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号