首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >3D VISCOUS INVERSE DESIGN OF TURBOMACHINERY USING ONE-EQUATION TURBULENCE MODEL
【24h】

3D VISCOUS INVERSE DESIGN OF TURBOMACHINERY USING ONE-EQUATION TURBULENCE MODEL

机译:基于一方程湍流模型的涡轮机械3D粘性逆设计

获取原文

摘要

Inverse method is a very efficient method in turbomachinery aerodynamic design. It takes blade aerodynamic loading as input, and the blade shape and the flow field are computed when calculation converged. However most current inverse methods model turbulent eddy viscosity by Baldwin-Lomax (BL) model or similar approximation, which does not involve local wall distance as a model parameter. Most one- and two-equation turbulence models are not that case, and local wall distance is needed in turbulent work variable(s) transport equation formulation. The usual wall distance computing procedure is the so called "exhaustive search method", which is a time-consuming process. When a flow solver running in analysis mode, the wall distance calculation is not a problem, it can be computed once and stored for subsequent use. But for design mode, this computation intensive process becomes a big challenge. For an inverse design run, the blade shape is updated periodically for about 400 times, if wall distances is re-computed for each blade shape update, the time cost is very appreciable. That is the reason that prohibits the application of higher order (one- and two-equation, compared to BL model) turbulence models in inverse method. In this paper, a novel wall distance calculation method is proposed. The new method transforms the distance searching problem into a length optimization problem, and the steepest descent method is used to find the minimal length from a target point to a wall face. Numerical experiments show that the method can reduce the computing time to approximately 1/10 of the exhaustive search method. Based on this, together with an enhanced blade update method and Spalart-Allmaras turbulence model, a 3D viscous redesign of an axial fan rotor is conducted. Final results demonstrate the effectivity of the proposed method.
机译:逆方法是涡轮机械空气动力学设计中非常有效的方法。它以叶片气动载荷作为输入,并且在计算收敛时计算叶片形状和流场。但是,大多数当前的反演方法都是通过Baldwin-Lomax(BL)模型或类似的近似方法对湍流涡流粘度进行建模的,该方法不涉及局部壁距作为模型参数。多数一方程和二方程湍流模型不是这种情况,在湍流功变量输运方程式的制定中需要局部壁距。通常的壁距计算过程是所谓的“穷举搜索法”,这是一个耗时的过程。当流量求解器在分析模式下运行时,壁距计算不是问题,可以计算一次并存储以备后用。但是对于设计模式,此计算密集型过程成为一个巨大的挑战。对于逆向设计,叶片形状会定期更新约400次,如果每次更新叶片形状时都要重新计算壁距,那么时间成本将非常可观。这就是禁止在逆方法中应用更高阶(与BL模型相比,一阶和二阶方程)湍流模型的原因。本文提出了一种新的壁距计算方法。新方法将距离搜索问题转换为长度优化问题,并且使用最速下降法来找到从目标点到墙面的最小长度。数值实验表明,该方法可以将穷举搜索方法的计算时间减少到大约1/10。基于此,结合改进的叶片更新方法和Spalart-Allmaras湍流模型,对轴流风机转子进行了3D粘性重新设计。最终结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号