首页> 外文会议>International congress on advances in nuclear power plants >CONVERGING FISSION AND FUSION SYSTEMS TOWARD HIGH-TEMPERATURE LIQUID-SALT COOLANTS: IMPLICATIONS FOR RESEARCH AND DEVELOPMENT STRATEGIES
【24h】

CONVERGING FISSION AND FUSION SYSTEMS TOWARD HIGH-TEMPERATURE LIQUID-SALT COOLANTS: IMPLICATIONS FOR RESEARCH AND DEVELOPMENT STRATEGIES

机译:将裂变和融合系统转化为高温液盐冷却剂:对研究和开发策略的意义

获取原文

摘要

Recent technology advances are creating growing interests in three nuclear technologies that require high-temperature salt coolants: (1) Fluoride-salt-cooled High-Temperature Reactors (FHRs) with solid fuel and liquid salt coolants, (2) Molten Salt Reactors (MSRs) with fuel dissolved in the salt coolant, and (3) high-magnetic-field fusion machines with immersion salt coolant blankets. The FHR is enabled by improved graphite-matrix coated-particle fuel developed for high-temperature gas-cooled reactors (HTGRs). Multiple technological advances primarily from outside nuclear engineering are improving MSR viability. A new superconductor that enables doubling magnetic fields in fusion machines may reduce fusion machine size by a factor or ten or more that, in turn, improves fusion viability and creates large incentives to use liquid salt immersion blankets for cooling, shielding and tritium production. Salt coolants were originally developed for the Aircraft Nuclear Propulsion Program in the 1950s with the goal of coupling a nuclear reactor to aircraft jet engines. They can transfer heat from the reactor to the power cycle at between 600 and 700°C. Recent advances in utility natural-gas combined-cycle technologies now enable coupling these reactors to a Nuclear Air-Brayton Combined Cycle (NACC) or potentially a Nuclear Helium Combined Cycle (NHCC). NACC can provide base-load electricity with additional variable peak electricity produced by using auxiliary natural gas, biofuels, hydrogen, or stored heat to (1) increase nuclear plant net revenue by 50 to 100% relative to base-load nuclear plants and (2) enable a low-carbon nuclear renewable electricity system. These developments create large incentives for cooperative research and development programs on salt coolants (corrosion, heat transfer, tritium control, etc.) and the associated power systems to advance and commercialize these three technologies.
机译:最近的技术进步正在对三种需要高温盐冷却剂的核技术产生越来越多的兴趣:(1)含固体燃料和液体盐冷却剂的氟盐冷却高温反应堆(FHR),(2)熔融盐反应堆(MSR) ),将燃料溶解在盐冷却液中;(3)带有浸没盐冷却液覆盖层的高磁场聚变机。通过为高温气冷堆(HTGR)开发的改进的石墨基涂层颗粒燃料,可以实现FHR。主要来自外部核工程的多项技术进步正在改善MSR的生存能力。一种新的能够使聚变机中的磁场加倍的超导体,可以使聚变机的尺寸减小百分之一或十以上,从而提高聚变的可行性,并极大地刺激了人们使用液浸盐毯进行冷却,屏蔽和shielding的生产。盐冷却剂最初是在1950年代为飞机核推进计划开发的,目的是将核反应堆与飞机喷气发动机连接。它们可以在600至700°C之间将热量从反应堆传递到功率循环。实用天然气联合循环技术的最新进展现在使这些反应堆可以与核气-布雷顿联合循环(NACC)或潜在的核氦联合循环(NHCC)耦合。 NACC可以通过使用辅助天然气,生物燃料,氢气或蓄热为基础负荷电力提供额外的可变峰值电力,以(1)相对于基础负荷核电厂将核电厂的净收入增加50%至100%,并且(2 )实现低碳核可再生电力系统。这些发展为在盐冷却剂(腐蚀,传热,tri控制等)和相关电力系统上的合作研究与开发计划提供了巨大的动力,以促进这三种技术的商业化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号