首页> 外文会议>International topical meeting on nuclear reactor thermal hydraulics >SCALING ISSUES FOR THE EXPERIMENTAL CHARACTERIZATION OF REACTOR COOLANT SYSTEM IN INTEGRAL TEST FACILITIES AND ROLE OF SYSTEM CODE AS EXTRAPOLATION TOOL
【24h】

SCALING ISSUES FOR THE EXPERIMENTAL CHARACTERIZATION OF REACTOR COOLANT SYSTEM IN INTEGRAL TEST FACILITIES AND ROLE OF SYSTEM CODE AS EXTRAPOLATION TOOL

机译:整体测试设施中反应釜冷却剂系统实验表征的尺度问题和系统代码作为外推工具的作用

获取原文

摘要

The phenomenological analyses and thermal hydraulic characterization of a nuclear reactor are the basis for its design and safety evaluation. In light of the impossibility and huge cost of performing meaningful experiments at full scale, scaled down experimental tests - Integral Effect Test (IET) and Separate Effect Test (SET) - are more feasible in developing "assessment database". The data are useful in characterizing the prototype design and in the validation of computational tools for safety analysis. The analyses of system behaviors including component interactions in the Reactor Coolant System (RCS), the Containment System (PCV) and the RCS/PCV coupled system have been extensively investigated using IETs in the past decades. Though several scaling methods, e.g. Linear, Power/Volume, Three level scaling, H2TS..., have been developed and applied in the IET and SET design, a direct extrapolation of the data to the prototype, i.e. the scalability, is in general not possible due to unavoidable scaling distortions. The scaling distortions are related to many factors, mainly the complex geometry, multiple component interactions and two phase thermal hydraulic phenomena in steady state and transient condition of a nuclear reactor. The complex nature of scaling a nuclear reactor requires a large number of scaling parameters to be simultaneously fulfilled. In addition, physical construction and funding constraints demand that a scaling compromise is inevitable. Therefore a scaling approach, e.g. time preservedot preserved, full height/reduced height, full pressure/reduced pressure, full power/reduced power..., has to be adopted in accordance with the objective of the IET or SET. Together with the scaling analysis, Best Estimate (BE) thermal hydraulic system code has been used for supporting experiment activity (design facilities, interpretation of results, etc) and for extrapolating results to full scale prototype conditions. Since the closure laws in the system code are mainly based on scaled test data, the extrapolation of code results remains a challenging and open issue. Starting from a brief analysis of the main characteristics of IETs and SETFs, the main objective of this paper is to analyze some IET scaling approaches used to the simulation of RCS responses which characterize the main scaling limits. The scaling approaches and their constraints in ROSA-HI, FIST and PIPER-ONE facility will be used to analyze their impact to the experimental prediction in Small Break LOCA counterpart tests. The liquid level behavior in the core and the core cladding temperature analysis are discussed used as judging criteria for the facilities scaling-up limits.
机译:核反应堆的现象学分析和热工水力特性是其设计和安全评估的基础。由于不可能进行大规模的有意义的实验,而且成本很高,因此在开发“评估数据库”时,按比例缩小的实验测试-整体效果测试(IET)和单独效果测试(SET)-更为可行。数据对于表征原型设计和验证用于安全分析的计算工具很有用。在过去的几十年中,已经使用IET广泛地研究了系统行为的分析,包括反应堆冷却剂系统(RCS),安全壳系统(PCV)和RCS / PCV耦合系统中的组件相互作用。虽然有几种缩放方法,例如在IET和SET设计中已经开发并应用了线性,功率/体积,三级缩放,H2TS ...,由于不可避免的缩放,通常无法将数据直接外推到原型,即可扩展性扭曲。结垢畸变与许多因素有关,主要是核反应堆在稳态和瞬态条件下的复杂几何形状,多组分相互作用和两相热水现象。缩放核反应堆的复杂性要求同时满足大量缩放参数。另外,物理构造和资金限制要求扩大规模是不可避免的。因此,例如,缩放方法。必须根据IET或SET的目标采用时间保留/不保留,全高/降低高度,全压/降低压力,全功率/降低功率...。与标度分析一起,最佳估算(BE)热力液压系统代码已用于支持实验活动(设计设施,结果解释等)以及将结果外推到完整比例的原型条件。由于系统代码中的闭包定律主要基于缩放后的测试数据,因此对代码结果进行外推仍然是一个具有挑战性和开放性的问题。从简要分析IET和SETF的主要特征开始,本文的主要目标是分析一些用于模拟RCS响应的IET缩放方法,这些方法表征了主要缩放限制。 ROSA-HI,FIST和PIPER-ONE设施中的缩放方法及其约束条件将用于分析它们对Small Break LOCA对应测试中的实验预测的影响。讨论了堆芯中的液位行为和堆芯包层温度分析,将其用作设施扩大极限的判断标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号