首页> 外文会议>ASME Pressure Vessels and Piping conference >Fabrication, Welding, and Inspection Techniques in Preparation for In-Reactor Testing of Accident Tolerant Fuels
【24h】

Fabrication, Welding, and Inspection Techniques in Preparation for In-Reactor Testing of Accident Tolerant Fuels

机译:准备用于事故容忍燃料的反应堆中测试的制造,焊接和检查技术

获取原文
获取外文期刊封面目录资料

摘要

After the Fukushima events in 2011, DOE-NE in collaboration with nuclear industry shifted R&D emphasis to accident performance of LWR fuels under extended loss of active cooling and steam exposure. DOE-NE has created a roadmap for the "Development of Light Water Reactor Fuels with Enhanced Accident Tolerance." The mission of the Accident Tolerant Fuel (ATF) Roadmap is to develop the next generation of LWR fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. The ultimate goal of the ATF roadmap is to support the insertion of lead fuel rods (LFRs) or lead fuel assemblies (LFAs) of an Accident Tolerant Fuel into a commercial LWR within 10 years (i.e., by the end of FY-2022). As a step toward this goal, an irradiation test series has been developed to assess the performance of proposed ATF concepts under normal LWR operating conditions. Data generated by this test program will be used to establish the feasibility of certain aspects of proposed ATF concepts, as well as provide information to support screening among concepts; as such, it is an integral part of Phase I: Feasibility Assessment and Down-Selection outlined in the ATF Roadmap. This irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL), and it has been designated as the ATF-1 test series. Current fission reactors use zirconium-based fuel cladding because of its extremely low macroscopic thermal neutron absorption cross-section, good high temperature strength, and decent corrosion resistance. However, advanced, innovative materials may provide these same benefits while increasing reactor safety margin, core power density, and fuel utilization. These advanced fuel cladding systems will allow revolutionary cladding performance and enhanced fuel mechanical designs, however, challenges exist in design, analysis and fabrication of innovative, never before tested, fuel cladding systems for in-reactor testing. This paper highlights the challenges associated with design, fabrication and welding, and inspection of innovative materials and actions taken to address those challenges in preparation for the Phase I ATR irradiation testing. The lessons learned from Phase I of this experiment can be used to guide researchers for design and analysis of future in-reactor testing of advanced fuel cladding systems.
机译:在2011年福岛事故之后,DOE-NE与核工业合作将研发重点转移到了由于长期失去主动冷却和暴露于蒸汽的情况下轻水堆燃料的事故性能。 DOE-NE为“开发具有更高事故耐受性的轻水反应堆燃料”制定了路线图。事故容忍燃料(ATF)路线图的任务是开发下一代LWR燃料,这些燃料在正常运行和事故情况下具有改进的性能,可靠性和安全性,并减少了废物的产生。 ATF路线图的最终目标是支持在10年内(即到2022财年末)将事故容忍燃料的铅燃料棒(LFR)或铅燃料组件(LFA)插入商业LWR中。作为朝着这个目标迈进的一步,已经开发了辐照测试系列,以评估建议的ATF概念在正常LWR操作条件下的性能。该测试程序生成的数据将用于确定提议的ATF概念某些方面的可行性,并提供信息以支持对概念进行筛选。因此,它是第一阶段的一个组成部分:可行性评估和向下选择在ATF路线图概括。该辐射测试系列计划作为一系列将在爱达荷州国家实验室(INL)运营的先进测试反应堆(ATR)中进行辐射的胶囊试验进行执行,并已指定为ATF-1测试系列。当前的裂变反应堆使用锆基燃料包壳,因为它的宏观热中子吸收截面极低,具有良好的高温强度和良好的耐腐蚀性。但是,先进的创新材料可能会提供这些相同的好处,同时增加反应堆的安全裕度,堆芯功率密度和燃料利用率。这些先进的燃料熔覆系统将实现革命性的熔覆性能,并增强燃料机械设计,但是,用于反应堆内测试的创新,从未经过测试的燃料熔覆系统在设计,分析和制造方面存在挑战。本文重点介绍了与设计,制造和焊接以及创新材料检查相关的挑战,以及为准备第一阶段ATR辐射测试而采取的应对措施。从该实验的第一阶段中学到的经验教训可用于指导研究人员设计和分析先进燃料包壳系统未来的反应堆内测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号