首页> 外文会议>ASME international technical conference and exhibition on packaging and integration of electronic and photonic microsystems >MECHANISTIC MODELING OF THE ANISOTROPIC STEADY STATE CREEP RESPONSE OF SnAgCu SINGLE CRYSTAL
【24h】

MECHANISTIC MODELING OF THE ANISOTROPIC STEADY STATE CREEP RESPONSE OF SnAgCu SINGLE CRYSTAL

机译:SnAgCu单晶各向异性稳态蠕变响应的力学模型

获取原文

摘要

A multiscale modeling framework is proposed in this study to capture the influence of the inherent elastic anisotropy of single crystal Sn and the inherent heterogeneous microstructure of a single crystal SnAgCu (SAC) solder grain on the secondary creep response of the grain. The modeling framework treats the SAC microstructure as having several distinct length scales. The smallest length scale (Tier 0) consists of the Sn BCT lattice. The eutectic Sn-Ag micro-constituent, consisting of nanoscale Ag_3Sn IMC particles embedded in the single crystal BCT Sn matrix, is termed Tier 1. The single-crystal SAC microstructure, consisting of Sn dendrites and surrounding eutectic Sn-Ag phase, is termed Tier 2. Dislocation recovery mechanisms, such as Orowan climb and detachment from nanoscale Ag_3Sn particles, are found to be the rate controlling mechanisms for creep deformation in the eutectic Sn-Ag phase (Tier 1) of a SAC single crystal. The anisotropic secondary creep rate of eutectic Sn-Ag phase (Tier 1), is then modeled using the above inputs and the saturated dislocation density calculated for dominant glide systems during secondary stage of creep. Saturated dislocation density is estimated as the equilibrium saturation between three competing processes: (1) dislocation generation; (2) dislocation impediment caused by back stress from pinning of dislocations at IMCs; and (3) dislocation recovery due to climb/detachment from IMCs. Secondary creep strain rate of eutectic Sn-Ag phase in three most facile slip systems is calculated and compared against the isotropic prediction. At low stress level secondary steady state creep rate along (110)[001] system is predicted to be ten times the creep rate along (100)[0-11] system. However, at high stress level, secondary steady state creep rate along (110)[001] system is predicted to be ten thousand times the creep rate along (100)[0-11] system. The above predictions are in strong agreement with (1-4) orders of magnitude of anisotropy observed in steady state secondary creep response in SAC305 solder joints tested under identical loading conditions in experiments conducted by several authors. The above model is then combined with Eigen-strain methods and average matrix stress concepts to homogenize the load sharing between the Sn dendrites and the surrounding eutectic Ag-Sn matrix. The resulting steady state creep rates are predicted for a few discrete single crystal SAC305 specimens. Very good agreement is observed between the predicted steady state creep rate and the measured creep rates for two SAC305 single crystal specimens.
机译:在这项研究中提出了一种多尺度建模框架,以捕获单晶Sn的固有弹性各向异性和单晶SnAgCu(SAC)焊料晶粒的固有异质微观结构对晶粒的二次蠕变响应的影响。建模框架将SAC微观结构视为具有几个不同的长度尺度。最小长度标度(第0层)由Sn BCT晶格组成。由嵌入单晶BCT Sn基质中的纳米级Ag_3Sn IMC颗粒组成的共晶Sn-Ag微成分称为Tier1。由Sn枝晶和周围的共晶Sn-Ag相组成的单晶SAC微观结构称为方法2。发现了位错恢复机制,例如Orowan爬升和与纳米级Ag_3Sn颗粒的脱离,是SAC单晶共晶Sn-Ag相(层1)中蠕变变形的速率控制机制。然后,使用上述输入和蠕变次级阶段计算的主要滑移系统的饱和位错密度,对共晶Sn-Ag相(层1)的各向异性次级蠕变速率进行建模。饱和位错密度估计为三个竞争过程之间的平衡饱和度:(1)位错产生; (2)钉扎在IMC上的位错引起的背向应力引起的位错阻碍; (3)由于从IMC爬升/脱离而导致的位错恢复。计算了三个最简单的滑移系统中共晶Sn-Ag相的次级蠕变应变率,并将其与各向同性预测进行了比较。在低应力水平,沿(110)[001]系统的次级稳态蠕变速率预计是沿(100)[0-11]系统的蠕变速率的十倍。但是,在高应力水平下,预计沿(110)[001]系统的次级稳态蠕变速率是沿(100)[0-11]系统的蠕变速率的一万倍。以上预测与几位作者在相同载荷条件下测试的SAC305焊点在稳态次级蠕变响应中观察到的(1-4)数量级各向异性非常吻合。然后,将上述模型与特征应变方法和平均基体应力概念相结合,以使Sn树枝状晶体与周围的共晶Ag-Sn基体之间的载荷分担均匀化。预测了一些离散的单晶SAC305标本的稳态蠕变速率。对于两个SAC305单晶样品,预测的稳态蠕变速率与测得的蠕变速率之间观察到非常好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号