【24h】

EULERIAN MULTIPHASE CONJUGATE MODEL FOR CHIP-EMBEDDED MICROCHANNEL FLOW BOILING

机译:芯片嵌入式微通道流沸腾的EULERIAN多相共轭模型

获取原文

摘要

The 3D (three dimensional) integration of microelectronic chips into chip stacks is an enabling technology to provide a possible path for increasing computational performance. However, 3D chip stacks require a solution to significant new thermal challenges. As a feasible solution, two-phase cooling utilizing a chip-to-chip interconnect-compatible dielectric fluid can be used. This chip-integrated micrometer scale two-phase cooling technology can be essential to fully optimize the benefits of improved integration density and modularity of 3D stacking of high performance integrated circuits (ICs) for future computing systems; but is faced with significant developmental challenges including high fidelity modeling. In the present work, an Eulerian multiphase model has been developed for simulating two-phase evaporative cooling through chip embedded microscale cavities. First, the model was used to predict the flow and heat transfer characteristics for coolant R245fa flowing through a single straight micro channel with cross section 100 × 100 μm and length 10 mm. The flow is sub-cooled in the initial section of the channel and saturated in the remaining. The results were compared to experimental data available from literature, focusing on the model capability to predict the correct flow pattern, temperature profile and pressure drop. Next, the validated model was extended to the simulation of complex flow geometries expected in microprocessor chip-stacks with chip-to-chip interconnects.
机译:将微电子芯片3D(三维)集成到芯片堆栈中是一项使能技术,可为提高计算性能提供可能的途径。但是,3D芯片堆栈需要解决方案以应对重大的新热挑战。作为可行的解决方案,可以使用利用芯片到芯片互连兼容的介电液的两相冷却。这种芯片集成的微米级两相冷却技术对于充分优化为未来的计算系统提供的高性能集成电路(IC)的3D堆叠的集成密度和模块化优势而言至关重要。但是面临着包括高保真建模在内的重大开发挑战。在当前的工作中,已经开发了欧拉多相模型来模拟通过芯片内嵌的微型腔体进行的两相蒸发冷却。首先,使用该模型预测冷却剂R245fa流经横截面为100×100μm,长度为10 mm的单个直微通道的流动和传热特性。流体在通道的初始部分过冷,其余部分饱和。将结果与可从文献中获得的实验数据进行比较,重点放在模型功能上,以预测正确的流型,温度曲线和压降。接下来,将经过验证的模型扩展到模拟具有芯片到芯片互连的微处理器芯片堆栈中预期的复杂流动几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号