首页> 外文会议>ASME international technical conference and exhibition on packaging and integration of electronic and photonic microsystems >LOCAL MEASUREMENTS OF FLOW BOILING HEAT TRANSFER ON HOT SPOTS IN 3D COMPATIBLE RADIAL MICROCHANNELS
【24h】

LOCAL MEASUREMENTS OF FLOW BOILING HEAT TRANSFER ON HOT SPOTS IN 3D COMPATIBLE RADIAL MICROCHANNELS

机译:3D兼容径向微通道中热点上流动沸腾传热的局部测量

获取原文
获取外文期刊封面目录资料

摘要

Hot spots and temperature non-uniformities are critical thermal characteristics of current high power electronics and future three dimensional (3D) integrated circuits (ICs). Experimental investigation to understand flow boiling heat transfer on hot spots is required for any two-phase cooling configuration targeting these applications. This work investigates hot spot cooling utilizing novel radial micro-channels with embedded pin arrays representing through-silicon-via (TSV) interconnects. Inlet orifices were designed to distribute flow in radial channels in a manner that supplies appropriate amounts of coolant to high-power-density cores. Specially designed test vehicles and systems were used to produce non-uniform heat flux profiles with nominally 20 W/cm~2 background heating, 200 W/cm~2 core heating and up to 21 W/mm~2 hot spot (0.2 mm × 0.2 mm) heating to mimic a stackable eight core processor die (20 mm × 20 mm) with two hot spots on each core. The temperatures associated with flow boiling heat transfer at the hot spots were locally measured by resistance temperature detectors (RTDs) integrated between the heat source and sink. At nominal pressure and flow conditions, use of R1234ze in these devices resulted in a maximum hot spot temperature (T_(hs)) of under 63 °C and average T_(hs) of 57 °C at a hot spot power density of 21 W/mm~2. A semi-empirical model was used to calculate the equivalent heat transfer rate around the hot spots which can provide a baseline for future studies on local thermal management of hot spots.
机译:热点和温度不均匀性是当前大功率电子设备和未来的三维(3D)集成电路(IC)的关键热特性。针对这些应用的任何两相冷却配置都需要进行实验研究,以了解热点上的沸腾沸腾传热。这项工作研究了利用新颖的径向微通道进行热点冷却的过程,该通道具有嵌入式插针阵列,这些插针阵列表示硅通孔(TSV)互连。进风口设计为在径向通道中分配流量,其方式是向高功率密度铁心提供适量的冷却剂。使用经过特殊设计的测试车辆和系统来产生不均匀的热通量分布图,标称背景加热为20 W / cm〜2,核心加热为200 W / cm〜2,热点高达21 W / mm〜2(0.2 mm× 0.2 mm)的加热以模仿可堆叠的八核处理器芯片(20 mm×20 mm),每个核上有两个热点。通过集成在热源和散热器之间的电阻温度检测器(RTD)局部测量与热点处的流动沸腾传热相关的温度。在标称压力和流量条件下,在这些设备中使用R1234ze导致最高热点温度(T_(hs))在63°C以下,平均T_(hs)在57 W的热点功率密度下/毫米〜2。使用半经验模型来计算热点周围的等效传热速率,这可以为将来对热点进行局部热管理的研究提供基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号