首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >CONSISTENT CONCEPTUAL DESIGN AND PERFORMANCE MODELING OF AERO ENGINES
【24h】

CONSISTENT CONCEPTUAL DESIGN AND PERFORMANCE MODELING OF AERO ENGINES

机译:航空发动机的一致概念设计和性能建模

获取原文

摘要

During the conceptual design process of an engine, a ther-modynamic cycle is initially defined. This is done to ensure that all aircraft requirements, defined in a number of discrete operating points, can be met. Critical component requirements can then be screened off from these operating points underpinning the conceptual design process. As an example, this has traditionally meant that aerodynamic sizing for low specific thrust turbo-fan engines occurs at top-of-climb and mechanical and temperature constraints are set at take-off. By providing additional parameters indicating the level of technology assumed, such as diffusion factors and stage loadings, a basic geometric representation of the engine can be mapped out as part of the conceptual design process. However, by choosing the parameters representing the component technology levels explicitly, the ability to trade efficiency for weight, or efficiency for cost, becomes less potent. In general, an explicit parameter choice will mean that a suboptimal solution is found. Hence, it makes sense to develop methods that allow including these technology parameters into the conceptual design and performance modeling process in a consistent way. If, for instance, component efficiency is modeled based on turbomachin-ery stage loading, including the stage loading parameters into the optimization means that the efficiency must be updated based on the stage loading variation. In general, a consistent method requires that conceptual design input is collected in a number of performance operating points, transferred into the conceptual design process and that output from the conceptual design process is returned to the optimizer. To illustrate the consistent conceptual design and performance modeling process, turbomachinery component models are included in the paper, interrelating polytropic efficiency, Reynolds number, size effects and component entry into service. These equations are solved consistently in the conceptual design and performance modeling to establish an optimum year 2020 engine. The method is then further illustrated by comparing the year 2020 engine with two year 2030 engines. The first year 2030 engine is established by an optimization assuming fixed polytropic turbomachinery efficiencies. The other case is defined by assuming the same engine architecture, i.e., the same number of turbomachinery stages as the year 2020 engine. In this case, the efficiency modeling is done using a consistent conceptual design optimization. The consistent optimization produced a more efficient engine despite the fact that the stage numbers were limited to the year 2020 configuration. The benefit is obtained by more thoroughly exploring the pressure ratio distribution between the engine components, as a result of the consistent optimization methodology.
机译:在发动机的概念设计过程中,最初定义了热动力循环。这样做是为了确保可以满足在多个离散操作点中定义的所有飞机要求。然后,可以从这些操作点中筛选出关键的组件要求,从而支持概念设计过程。举例来说,传统上这意味着低比推力涡轮风扇发动机的空气动力学尺寸是在爬升的顶部发生的,而机械和温度的约束是在起飞时设定的。通过提供指示假定的技术水平的其他参数(例如扩散系数和阶段负荷),可以将发动机的基本几何表示形式映射为概念设计过程的一部分。但是,通过明确选择代表组件技术水平的参数,以效率换重量或以成本换价格的能力变得更弱。通常,明确的参数选择将意味着找到次优的解决方案。因此,开发允许以一致的方式将这些技术参数包括到概念设计和性能建模过程中的方法是有意义的。例如,如果基于涡轮机级负荷对部件效率进行建模,则将级负荷参数包括到优化中,则意味着必须根据级负荷变化来更新效率。通常,一致的方法要求在许多性能操作点中收集概念设计输入,并将其转移到概念设计过程中,并将概念设计过程的输出返回给优化器。为了说明一致的概念设计和性能建模过程,本文包括了涡轮机械部件模型,将多方效率,雷诺数,尺寸效应和部件投入使用相互关联。这些方程在概念设计和性能模型中得到了一致的求解,从而建立了2020年最佳发动机。然后,通过将2020年的发动机与两年的2030年的发动机进行比较,进一步说明该方法。 2030年第一年的发动机是通过优化来确定的,假设该发动机具有固定的多方涡轮机械效率。另一种情况是通过假设与2020年发动机相同的发动机架构(即涡轮机械级数)来定义的。在这种情况下,效率建模是使用一致的概念设计优化完成的。尽管阶段数仅限于2020年配置,但始终如一的优化产生了更高效的引擎。作为一致的优化方法的结果,可以通过更彻底地研究发动机各组件之间的压力比分布来获得好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号