首页> 外文会议>International topical meeting on nuclear reactor thermal hydraulics >EXPERIMENTAL STUDY OF PRESSURE DROP AND MODELING OF INTERFACIAL SHEAR FOR VERTICAL ANNULAR FLOW
【24h】

EXPERIMENTAL STUDY OF PRESSURE DROP AND MODELING OF INTERFACIAL SHEAR FOR VERTICAL ANNULAR FLOW

机译:垂直环状流动界面剪切压降和建模的实验研究

获取原文

摘要

The knowledge of the interfacial shear stress is not only essential for estimating the pressure drop but also is fundamental for modelling two-phase flow phenomena. Most annular flow interfacial shear stress models in the open literature are formulated based upon the sand-roughness model, which diverge from reality to some extent because of the mobility of gas-liquid interface. In view of this, a prediction model of gas-liquid interfacial shear stress for vertical annular flow has been proposed, which takes the interfacial characteristics into account, i.e. the local disturbance wave shapes obtained through processing the time trace of liquid film thickness that is measured using high-speed videos and extracted by the Matlab code in our previous work. What is more, the influence of the entrainment-deposition process and formation of gas eddy caused by the disturbance wave height when the gas core moves through the disturbance wave and subsequently encounters an abrupt expansion on the interfacial shear stress are incorporated into the model. The results predicted by the current model show that the interfacial shear stress has an increasing trend for the increase of both gas and liquid superficial velocities, and the non-dimensional pressure drop originating from the interfacial shear stress is in the form of c_(js) =33.6 Re_x~(-091) Re_f~(0.30).
机译:界面剪切应力的知识不仅适用于估计压降,而且对模拟两相流现象的基础是必不可少的。开放文献中大多数环形流动界面剪切应力模型基于砂粗糙模型配制,因为由于气液界面的迁移率,在一定程度上从现实中发散。鉴于此,已经提出了一种垂直环形流动的气液界面剪切应力的预测模型,其考虑了界面特性,即通过处理测量的液体膜厚度的时间迹线而获得的局部扰动波形在我们以前的工作中使用高速视频并由MATLAB代码提取。更重要的是,当气体通过干扰波移动时,夹带沉积工艺的影响和由干扰波高度引起的气体涡体引起的,随后遇到界面剪切应力的突然膨胀被结合到模型中。目前模型预测的结果表明,界面剪切应力增加了气体和液体表面速度的增加的趋势,并且来自界面剪切应力的非尺寸压降是C_(JS)的形式= 33.6 re_x〜(-091)re_f〜(0.30)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号