首页> 外文会议>Society of Tribologists Lubrication Engineers annual meeting exhibition >COMPARISON OF THERMOELECTRIC MEASUREMENTS WITH MODELS OF SLIDING ASPERITY CONTACT FLASH TEMPERATURES
【24h】

COMPARISON OF THERMOELECTRIC MEASUREMENTS WITH MODELS OF SLIDING ASPERITY CONTACT FLASH TEMPERATURES

机译:热电测量与滑动均匀接触闪点温度模型的比较

获取原文
获取外文期刊封面目录资料

摘要

The temperature of sliding components is of essential importance for understanding friction, wear, and generation of chemical reaction films that may form in oil-lubricated systems. In boundary regime sliding, most of the load is carried by the surface asperities in which (real area of contact) « (apparent area of contact) which produces large asperity or "flash" heating. At asperities, heat can be either deformational or frictional. The temperature of microscopic asperities in area of sliding is difficult to measure because it is brief, localized, and inaccessible. The flash heating may affect the substrate microstructure, enhance surface reaction rates, produce thermomechanical wear, or promote EP additive activation. The heating can occur in the following regimes. 1) Bulk heating of the entire system. Bulk heating is easy to calculate and can be determined from heat flow calculations assuming frictional heating is dissipated into the counterfaces with partition factor a. 2) Band heating in which the nominal Hertzian contact area exhibits predictable pulsed heating/cooling cycles. Band or spot heating over a defined contact area has been analyzed by many workers and is summarized well by Kennedy. In band heating, the heat density and pulsed temperature rise is a strong function of Hertzian contact size, sliding speed, and coefficient of friction. 3) "Flash" temperature heating of individual random asperities due to asperity interactions only. The treatment of asperity interactions is more difficult but is addressed by Archard . In flash heating, the temperature pulses may be strongly affected by sliding speed, and less affected by Hertzian contact size because it is only the asperities themselves that are rubbing/shearing against each other and experiencing transitory (us) flash heating. Fig. 1. is a depiction of the three regimes.
机译:滑动部件的温度对于理解摩擦,磨损以及在油润滑系统中可能形成的化学反应膜的产生至关重要。在边界状态滑动中,大部分载荷由表面粗糙承担,其中(接触的实际面积)«(接触的表观面积)会产生较大的粗糙或“毛刺”加热。在粗糙状态下,热量可以是变形的也可以是摩擦的。滑动区域的微观凹凸温度很短,局部且难以接近,因此难以测量。急骤加热可能会影响基材的微观结构,提高表面反应速率,产生热机械磨损或促进EP添加剂的活化。加热可以按以下方式进行。 1)整个系统的整体加热。整体加热很容易计算,并且可以通过热流计算确定,前提是假设摩擦热以分配系数a消散到对面中。 2)带加热,其中标称赫兹接触面积显示出可预测的脉冲加热/冷却循环。许多工人已经分析了在定义的接触区域上的带状或点状加热,肯尼迪对此进行了很好的总结。在带加热中,热密度和脉冲温度升高是赫兹接触尺寸,滑动速度和摩擦系数的强大函数。 3)仅由于粗糙相互作用,对单个随机粗糙进行“快速”温度加热。粗糙相互作用的处理更为困难,但Archard对此进行了解决。在闪蒸加热中,温度脉冲可能会受到滑动速度的强烈影响,而受Hertzian接触尺寸的影响较小,这是因为只有凹凸部本身相互摩擦/剪切并经历了短暂的(美国)闪蒸加热。图1.描绘了三种情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号