首页> 外文会议>IEEE International Telecommunications Energy Conference >A 160-kW high-efficiency photovoltaic inverter with paralleled SiC-MOSFET modules for large-scale solar power
【24h】

A 160-kW high-efficiency photovoltaic inverter with paralleled SiC-MOSFET modules for large-scale solar power

机译:具有并联SiC-MOSFET模块的160 kW高效光伏逆变器,用于大规模太阳能

获取原文

摘要

To reduce the life cycle cost of solar power plants, high conversion efficiency for inverters is necessary. The advantages of SiC MOSFETs include not only lower conduction loss but also the ability of high-speed switching. Lower switching loss is derived from high-speed switching. Especially with SiC MOSFETs, the tail current and switching recovery loss can be drastically reduced compared with Si IGBTs because of unipolar device operation. However, high-speed switching with SiC MOSFETs creates technical problems such as erroneous ignition at higher dv/dt and di/dt and device failure due to surge voltage. Therefore, we focused on high-speed, stable switching techniques for SiC-MOSFET-based modules. To solve the problems, the following steps were taken. 1) A compact gate driver output stage including a Miller clamp circuit was developed and arranged on the gate and the source terminals of each module directly. 2) A low inductance busbar configuration between the P terminal and the N terminal was developed. 3) For the 4-paralleled SiC-MOSFET modules, the modules having similar Vds characteristics were selected. To confirm the contribution of these techniques to the improvement in efficiency, a 160-kW prototype photovoltaic inverter (2-level) with SiC-MOSFET modules for large-scale solar power plants was developed. A higher peak efficiency (greater than 99.1%) was obtained for an input voltage of 470 VDC, an output voltage of 300 VAC, and a load factor of 30-60%. Our findings show that inverters with a SiC-MOSFET-based module have higher efficiency than 2- and 3-level single-stage inverters with a Si-IGBT-based module.
机译:为了降低太阳能发电厂的生命周期成本,逆变器的高转换效率是必需的。 SiC MOSFET的优点不仅包括较低的传导损耗,而且还包括高速开关的能力。较低的开关损耗源于高速开关。尤其是对于SiC MOSFET,由于采用单极器件工作,因此与Si IGBT相比,可以显着降低尾电流和开关恢复损耗。但是,使用SiC MOSFET进行高速开关会产生技术问题,例如在较高的dv / dt和di / dt时错误点火,以及由于浪涌电压导致的器件故障。因此,我们专注于基于SiC-MOSFET的模块的高速,稳定的开关技术。为了解决这些问题,采取了以下步骤。 1)开发了包括米勒钳位电路的紧凑型栅极驱动器输出级,并将其直接布置在每个模块的栅极和源极端子上。 2)开发了P端子和N端子之间的低电感母线配置。 3)对于四并联SiC-MOSFET模块,选择具有相似Vds特性的模块。为了确认这些技术对提高效率的贡献,开发了用于大型太阳能发电厂的带有SiC-MOSFET模块的160 kW原型光伏逆变器(2级)。对于470 VDC的输入电压,300 VAC的输出电压和30-60%的负载系数,可以获得更高的峰值效率(大于99.1%)。我们的发现表明,与基于Si-IGBT的模块的2级和3级单级逆变器相比,基于SiC-MOSFET的模块的逆变器具有更高的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号