首页> 外文会议>Corrosion conference and expo >Modeling of Top of Line Corrosion with Organic Acid and Glycol
【24h】

Modeling of Top of Line Corrosion with Organic Acid and Glycol

机译:用有机酸和乙二醇腐蚀顶部腐蚀

获取原文

摘要

Many approaches have been used for modeling Top of Line Corrosion (TLC). One common principle is that TLC is limited by the amount of iron that can be transported with the condensed water. This means that the TLC rate is proportional to the condensation rate and proportional to the solubility of iron in the condensing phase. Therefore, TLC rate modeling typically involves a combination of condensation rate calculations and chemical equilibrium calculations. The presence of organic acid will reduce the pH and increase the iron solubility in the condensing water. It is therefore important that the chemical equilibrium calculations also include the effect of organic acids. Condensation of pure water is well understood and calculation of condensation rates has been implemented in several multiphase flow software packages on the market. Glycol injection is applied to many gas transport pipelines to avoid hydrate formation. Mono Ethylene Glycol (MEG) is commonly used for this purpose; typically about 80 wt.% MEG is injected at the well head and the aqueous phase at the end of the pipeline contains about 40 wt.% MEG. The effect of MEG on internal condensation in pipelines has been less investigated. When MEG is present it will reduce the water vapor pressure but at the same time a small amount of MEG will evaporate and be present in the gas phase. If the chemical calculations are based on condensing the gas phase components without resupply to maintain the chemical equilibrium (e.g. due to slow kinetics), the condensing phase will be almost pure water. If complete chemical equilibrium is assumed, the condensing phase will contain much more MEG, and in principle it will have almost the same MEG content as the aqueous phase at the bottom of line. This paper discusses various TLC modeling approaches, in particular how the corrosion rates are affected by MEG and organic acids.
机译:已经使用了许多方法来对顶部腐蚀(TLC)进行建模。一个普遍的原则是,TLC受冷凝水可运输的铁量的限制。这意味着TLC速率与冷凝速率成正比,与铁在冷凝相中的溶解度成正比。因此,TLC速率建模通常涉及凝结速率计算和化学平衡计算的组合。有机酸的存在会降低pH值,并增加铁在冷凝水中的溶解度。因此,重要的是化学平衡计算还应包括有机酸的影响。众所周知,纯净水的冷凝过程已经在市场上的几种多相流软件包中实现了冷凝率的计算。乙二醇注入已应用于许多输气管道,以避免形成水合物。单乙二醇(MEG)通常用于此目的。通常在井口注入约80重量%的MEG,并且在管线末端的水相包含约40重量%的MEG。 MEG对管道内部冷凝的影响研究较少。当存在MEG时,它将降低水蒸气压力,但同时少量的MEG会蒸发并以气相形式存在。如果化学计算是基于冷凝气相成分而没有重新补充以维持化学平衡(例如,由于动力学缓慢),则冷凝相将几乎是纯净水。如果假设完全的化学平衡,则冷凝相将包含更多的MEG,并且原则上它与管线底部的水相具有几乎相同的MEG含量。本文讨论了各种TLC建模方法,特别是MEG和有机酸如何影响腐蚀速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号