首页> 外文会议>Geothermal Resources Council annual meeting >Imaging the Roots of High-Temperature Geothermal Systems Using MT: Results From the Taupo Volcanic Zone, New Zealand
【24h】

Imaging the Roots of High-Temperature Geothermal Systems Using MT: Results From the Taupo Volcanic Zone, New Zealand

机译:使用MT成像高温地热系统的根源:新西兰陶波火山带的结果

获取原文

摘要

High-temperature, economic geothermal resources are currently restricted to drillable depths (typically less than 3 km). However, the roots of these geothermal resources originate at much greater depths, where fluids extract heat from high temperature sources (i.e. magma) and are transported to the surface. This convective process is not well understood; nor is the associated deep-seated permeability required. Besides sourcing hydrothermal systems from which electricity can now be generated, these deep-rooted geothermal fluids also represent untapped energy resources themselves, which in the coming years may well be exploited with advances in deep drilling technology. Thus a very good case can be made to expand our knowledge on the roots of geothermal systems to better extract the existing resource base as well as tap into new sources of geothermal energy, including sources beyond conventional extraction depths in the coming years. In this paper, we probe mechanisms of heat exchange and fluid transport beneath four high-temperature geothermal systems in the Taupo Volcanic Zone (TVZ) using one of the largest 3D magnetotelluric (MT) arrays ever assembled (259 MT soundings, 1250 km~2). We demonstrate the reliability of full tensor 3D MT modeling by applying a different data processing and 3D inversion algorithm to data analyzed by Bertrand et al. (2012), retrieving many of the same dominant resistivity features. We expand upon their study by using 90 additional MT soundings that cover a new area to the NW, and considering two geothermal systems not discussed in the previous work. According to our resistivity model, sustained convection cells extract energy and volatiles from quasi-plastic rock at ~5 - 7 km, elevating fluid density. Hot saline fluids migrate upward from this depth, potentially controlled by heavily fractured zones (i.e., fault accommodation zones), depressing resistivity as they are transported to the geothermal systems. Intrusive volcanics may also contribute to the low resistivity features imaged between 3 and 7 km.
机译:目前,高温,经济的地热资源仅限于可钻深度(通常小于3 km)。但是,这些地热资源的根源是在更大的深度,流体从高温源(即岩浆)吸取热量,然后将其传输到地表。对流过程尚未得到很好的理解。也不需要相关的深层渗透率。这些深层的地热流体除了采购可以从中产生电能的热液系统之外,它们本身也代表着尚未开发的能源,在未来几年中,深层钻井技术的发展将可以很好地利用这些资源。因此,可以很好地扩展我们对地热系统根源的认识,以更好地开采现有资源基础,并开发新的地热能源,包括未来几年常规开采深度以外的能源。在本文中,我们使用有史以来最大的3D大地电磁(MT)阵列之一(259 MT测深,1250 km〜2),探讨了陶波火山区(TVZ)的四个高温地热系统下的热交换和流体输送机制。 )。通过对Bertrand等人分析的数据应用不同的数据处理和3D反演算法,我们证明了全张量3D MT建模的可靠性。 (2012年),检索了许多相同的主要电阻率特征。我们通过使用覆盖西北地区新区域的90种附加MT测深,并考虑先前工作中未讨论的两个地热系统,来扩展他们的研究范围。根据我们的电阻率模型,持续对流单元在约5-7 km处从准塑性岩石中提取能量和挥发物,从而提高了流体密度。热的盐水从该深度向上迁移,可能受到严重破裂的区域(即断层容纳区域)的控制,从而在将其输送到地热系统时降低了电阻率。侵入性火山岩也可能有助于在3至7公里之间成像的低电阻率特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号