首页> 外文会议>Conference on advances in optical and mechanical technologies for telescopes and instrumentation >New metrology techniques improve the production of silicon diffractive optics
【24h】

New metrology techniques improve the production of silicon diffractive optics

机译:新的计量技术改善了硅衍射光学的生产

获取原文

摘要

Silicon immersion gratings and grisms offer significant advantages in compactness and performance over front-surface gratings and over grisms made from lower-index materials. At the same time, the high refractive index of Si (3.4) leads to very stringent constraints on the allowable groove position errors, typically rms < 20 nm over 100 mm and repetitive error of <5 nm amplitude. For both types of devices, we produce grooves in silicon using photolithography, plasma etching, and wet etching. To date, producers have used contact photolithography to pattern UV sensitive photoresist as the initial processing step, then transferred this pattern to a layer of silicon nitride that, in turn, serves as a hard mask during the wet etching of grooves into silicon. For each step of the groove production, we have used new and sensitive techniques to determine the contribution of that step to the phase non-uniformity. Armed with an understanding of the errors and their origins, we could then implement process controls for each step. The plasma uniformity was improved for the silicon nitride mask etch process and the phase contribution of the plasma etch step was measured. We then used grayscale lithography, a technique in which the photoresist is deliberately underexposed, to measure large-scale non-uniformities in the UV exposure system to an accuracy of 3-5%, allowing us to make corrections to the optical alignment. Additionally, we used a new multiple-exposure technique combined with laser interferometry to measure the relationship between UV exposure dose and line edge shift. From these data we predict the contribution of the etching and photolithographic steps to phase error of the grating surface. These measurements indicate that the errors introduced during the exposure step dominate the contributions of all the other processing steps. This paper presents the techniques used to quantify individual process contributions to phase errors and steps that were taken to improve overall phase uniformity.
机译:硅浸入式光栅和磨粒在紧凑性和性能方面比前表面光栅和低折射率材料制成的磨粒具有明显的优势。同时,Si(3.4)的高折射率导致对允许的凹槽位置误差的严格限制,通常在100 mm上均方根<20 nm,幅度重复误差在<5 nm。对于这两种类型的设备,我们都使用光刻,等离子刻蚀和湿法刻蚀在硅中产生凹槽。迄今为止,生产商已经使用接触光刻技术对UV敏感的光致抗蚀剂进行图案化,作为初始处理步骤,然后将该图案转移到氮化硅层上,该氮化硅层在将沟槽湿法刻蚀成硅的过程中又充当了硬掩模。对于凹槽生产的每个步骤,我们都使用了新的敏感技术来确定该步骤对相位不均匀性的影响。了解了错误及其来源之后,我们便可以为每个步骤实施过程控制。对于氮化硅掩模蚀刻工艺,改善了等离子体均匀性,并且测量了等离子体蚀刻步骤的相位贡献。然后,我们使用灰度光刻技术(故意使光刻胶曝光不足)来测量UV曝光系统中的大规模不均匀性,精确度为3-5%,从而使我们可以对光学对准进行校正。此外,我们使用了一种新的多重曝光技术并结合了激光干涉测量技术来测量UV曝光剂量和线条边缘偏移之间的关系。根据这些数据,我们可以预测蚀刻步骤和光刻步骤对光栅表面相位误差的影响。这些测量结果表明,在曝光步骤中引入的误差支配了所有其他处理步骤的贡献。本文介绍了用于量化单个过程对相位误差的影响的技术,以及为提高整体相位均匀性而采取的步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号