首页> 外文会议>IEEE International Ultrasonics Symposium >Does large beam-steered angle velocity compounding using plane wave transmission improve blood vector velocity estimation in a 3D carotid artery flow field?
【24h】

Does large beam-steered angle velocity compounding using plane wave transmission improve blood vector velocity estimation in a 3D carotid artery flow field?

机译:使用平面波传输进行大波束转向角速度复合是否会改善3D颈动脉流场中的血液矢量速度估计?

获取原文

摘要

Quantification of complex flow patterns with variations in the blood flow direction throughout an image plane and strong fluctuations over the cardiac cycle, requires dedicated transmission schemes. Conventional Doppler-based velocity imaging techniques are limited, due to their angle dependence and limited frame rates. New methods have been suggested to estimate the full 2D velocity vector. These methods need to be combined with intelligent transmit schemes to increase the imaging frame rate. This study investigates the performance of two different techniques to estimate the 2D blood velocity vector, both using a 2D normalized cross-correlation based displacement estimation algorithm. Normal 0° velocity estimation is compared with compound vector velocity estimation, using plane wave transmissions. Combining finite element modeling with FIELD II provided ultrasound radio frequency data of a carotid artery flow field over the entire cardiac cycle. Ultrasound radiofrequency element data were simulated for a linear array transducer (f = 9 MHz, f = 36 MHz, pitch = 198 µm). Plane waves were transmitted at a PRF of 2 kHz at either 0° angle only, or at sequentially changing angles of 0°, −20° and 20°. RF data were beamformed in the direction of the steered plane waves by delay-and-sum beamforming. The 0° data were additionally beamformed at angles of −20° and +20°. The horizontal velocity component was determined in three different ways: 1) directly from the 0° acquisition (PW0), 2) by compounding the axial velocity component from the 0° data beamformed at +20° and −20° (PW0), or 3) by compounding the axial velocity component from the multi-angle acquisitions (PW). The vertical velocity component was determined directly from the 0° acquisition. The performance of the methods was compared by- calculating the root mean squared error (RMSE) between estimated and true velocity components. The results showed the ability of the PW0 and PW0 methods to provide accurate 2D velocity estimates. Both methods perform similarly based on the calculated RMSEs. PW showed less accurate velocity estimates, i.e., higher RMSEs, which are probably caused by the reduced effective frame rate and presence of grating lobes. At present frame rate and transducer choice, velocity compounding does not seem to be beneficial for 2D velocity estimation in a carotid artery flow field.
机译:定量复杂的流型,包括整个图像平面中的血流方向变化以及整个心动周期的剧烈波动,需要专门的传输方案。常规的基于多普勒的速度成像技术因其角度依赖性和有限的帧速率而受到限制。已经提出了新的方法来估计完整的2D速度矢量。这些方法需要与智能传输方案结合使用,以提高成像帧速率。这项研究调查了两种不同技术估算2D血流速度矢量的性能,均使用基于2D归一化互相关的位移估算算法。使用平面波传输,将法线0°速度估计与复合矢量速度估计进行比较。将有限元建模与FIELD II结合使用可提供整个心动周期中颈动脉流场的超声射频数据。针对线性阵列换能器(f = 9 MHz,f = 36 MHz,螺距= 198 µm)模拟了超声射频元件数据。平面波仅以0°角或以0°,-20°和20°依次变化的角度以2kHz的PRF传输。 RF数据是通过延迟和求和波束成形在转向平面波的方向上进行波束成形的。另外,以-20°和+ 20°的角度对0°数据进行波束成形。水平速度分量是通过三种不同的方式确定的:1)直接从0°采集(PW0),2)通过将来自+ 20°和-20°波束形成的0°数据的轴向速度分量进行复合,或者3)通过复合来自多角度采集(PW)的轴向速度分量。垂直速度分量直接由0°采集确定。通过计算估计和真实速度分量之间的均方根误差(RMSE),比较了这些方法的性能。结果表明,PW0和PW0方法能够提供准确的2D速度估计。两种方法都基于计算出的RMSE表现相似。 PW显示出较低的准确速度估计,即较高的RMSE,这可能是由于有效帧频降低和光栅波瓣的存在所致。在当前的帧速率和换能器选择下,速度复合似乎对颈动脉流场中的2D速度估计没有好处。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号