首页> 外文会议>Membrane technology conference exposition >OPERATIONS AND LRV CALCULATIONS AT NORTH DAKOTA’S SOUTHWEST PIPELINE PROJECT OLIVER-MERCER-NORTH DUNN (OMND) DRINKING WATER TREATMENT FACILITY
【24h】

OPERATIONS AND LRV CALCULATIONS AT NORTH DAKOTA’S SOUTHWEST PIPELINE PROJECT OLIVER-MERCER-NORTH DUNN (OMND) DRINKING WATER TREATMENT FACILITY

机译:北达科他州西南管道项目的运营和轻型卡车计算OLIVER-MERCER-NORTH DUNN(OMND)饮用水处理设施

获取原文

摘要

This presentation will discuss the operation of a 4 MGD pressurized two-stage Ultrafiltration(UF) plant over a 14 month period at the Oliver-Mercer-North Dunn (OMND) Drinking WaterTreatment Facility. The OMND Treatment Facility utilizes Ultrafiltration followed by lowpressure Reverse Osmosis Softening to produce a blended Finished Water capacity of 3.6 MGD.The 4 MGD capacity of the UF system supplies the feed water for the softening system and asoftening bypass system for a blended Finished Water consisting of 60% softening systemproduct water and 40% UF Product water. The plant is located approximately 12 miles (20kilometers) northwest of Beulah, North Dakota, USA and uses Missouri River water from theLake Sakakawea reservoir as a source of supply. This plant experienced a minor issue duringstartup in that a shipment issue resulted in all the UF membranes being subjected to sub-zeroFahrenheit temperatures (-20 deg. C) during transportation to site. Unlike flat-sheet PVDFmembranes which are shipped dry, pressurized hollow fiber membranes are shipped wet with apreservative solution to ensure the membranes do not dry out. Subjecting the modules tofreezing temperatures can result in freezing of the preservative solution as well as drying out ofthe membrane fibers. Extreme cold sub-zero F temperatures can cause the fibers to becomebrittle and allow them to snap easily with any jarring motion. Solutions to these problemsinclude pinning of the broken fibers and re-wetting of the dried fibers with a 40 wt% ethanolsolution. For the specific plant at OMND only two (2) modules out of one hundred and fifty(150) were significantly damaged by the low temperature and fully replaced under warranty bythe membrane manufacturer. Both of the damaged modules were pinned and returned to themanufacturer. One of the modules was re-wetted back at the factory. The re-wetted modulerecovered back to within the manufacturing Quality Control Release Value (QCRV). Fiveadditional modules had damaged fibers but the damaged fibers were limited in number andrepaired on-site. The five repaired modules, along with the other modules in the plant appearedto "wet-up" during start up and became tighter, passing less air, resulting in lower pressure decayand higher LRV's over a period of a few days.To ensure the integrity of all 150 modules was intact, daily manual logsheet readings along withPLC data was gathered. Data included the start pressure, end pressure and calculated LogRemoval Value (LRV) result from the daily Pressure Decay Test (PDT) also known as DirectIntegrity Test (DIT). To ensure a conservative result the LRV calculations used the Darcy-PipeFlow Model. Based on the USEPA Membrane Filtration Guidance Manual membranemanufacturers have the option of choosing either the Darcy –Pipe flow model which assumesturbulent flow in a breach in the fiber or Hagen–Poiseuille model which assumes laminar flow ora combination of the two. The calculated LRV values are always lower using the Darcy-Pipeflow model. For example the following was written in an independent challenge test reportprepared for the California Department of Public Health for a pressurized UF membrane modulesimilar to the one used at OMND, “The removal efficiency of microspheres was measured at 4.6and 5.3-log when the Darcy model predicted approximately 4.0-log removal and the Hagen-Poiseuille model predicted approximately 4.7-log removal.” By using the Darcy-Pipe model aconservative LRV result is assured.At the OMND Plant calculated LRV values are consistently 4.3 log or greater using the Darcy-Pipe model. Other conservative parameters were also used in the LRV calculations indetermining the minimum test pressure required for detection of a 3 μm or smaller breach in themembrane surface. For the pore-shape correction factor (ĸ) the most conservative value of 1was used. For the liquid – membrane contact angle (Ѳ) zero degrees was used as opposed to ameasured contact angle.Overall integrity performance of the plant for fourteen month period will be discussed in detail.Trans-Membrane Pressure (TMP), flux, temperature corrected permeability (specific flux) andcleaning efficiency for both the first and second UF stages will also be presented.
机译:本演讲将讨论4 MGD加压两阶段超滤的操作 (UF)工厂在Oliver-Mercer-North Dunn(OMND)饮用水厂工作了14个月 治疗设施。 OMND处理设施利用超滤技术,然后进行低 反渗透软化以产生3.6 MGD的混合成品水容量。 超滤系统的4 MGD容量为软化系统提供给水,并为 软化旁路系统,用于混合成品水,由60%的软化系统组成 产品水和40%UF产品水。该工厂位于约12英里(20 美国北达科他州比拉(Beulah)西北),并利用密苏里州 Sakakawea湖水库作为补给源。该植物在经历了一个小问题 启动过程中,装运问题导致所有超滤膜均低于零排放 在运输到现场期间的华氏温度(-20摄氏度)。与平板PVDF不同 干燥运输的中空膜,加压中空纤维膜运输时湿润, 防腐溶液,以确保膜不会变干。使模块服从 冷冻温度可能导致防腐剂溶液冻结以及变干。 膜纤维。零度以下的极端低温温度会导致纤维变纤细 脆,并允许它们以任何震颤的动作轻松地折断。这些问题的解决方案 包括固定断裂的纤维,并用40 wt%的乙醇重新润湿干燥的纤维 解决方案。对于OMND的特定工厂,一百五十个模块中只有两(2)个模块 (150)被低温严重损坏,并在保修期内完全替换为 膜制造商。将两个损坏的模块固定并返回到 制造商。其中一个模块在工厂重新润湿。重新润湿的模块 恢复到制造质量控制释放值(QCRV)中。五 其他模块的光纤损坏,但损坏的光纤数量有限,并且 现场维修。出现了五个已修复的模块以及工厂中的其他模块 在启动过程中“变湿”并变得更紧密,通过的空气更少,从而降低了压力衰减 以及几天内较高的LRV。 为了确保所有150个模块的完整性都完整无缺,请每天手动阅读日志记录以及 收集PLC数据。数据包括开始压力,结束压力和计算的对数 每日压力衰减测试(PDT)(也称为直接完整性测试(DIT))得出的去除值(LRV)。为了确保保守的结果,LRV计算使用的是Darcy-Pipe 流模型。基于USEPA膜过滤指南手册中的膜 制造商可以选择采用以下假设的Darcy –Pipe流模型 在假定层流或 两者的结合。使用Darcy-Pipe,计算得出的LRV值始终较低 流模型。例如,以下内容写在独立的挑战测试报告中 为加利福尼亚公共卫生部准备了加压超滤膜组件 与OMND所使用的类似,“微球的去除效率测得为4.6 当Darcy模型预测移除约4.0个对数,而Hagen-则预测为5.3对数 Poiseuille模型预计将清除4.7个对数。”通过使用Darcy-Pipe模型 保守的LRV结果得到了保证。 在OMND工厂,使用Darcy- 管道模型。其他保守参数也用于LRV计算中 确定检测3μm或更小的缺口所需的最小测试压力 膜表面。对于孔隙形状校正因子(ĸ),最保守的值为1 被使用了。对于液膜接触角(Ѳ),使用零度,而使用 测量的接触角。 将详细讨论该工厂在十四个月内的整体完整性表现。 跨膜压力(TMP),通量,温度校正的渗透率(比通量)和 还将介绍第一级和第二级超滤阶段的清洁效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号