首页> 外文会议>International symposium on optoelectronic technology and application >Numerical Analysis of Thermal Effect in Aluminum Alloy by Monopulse Laser
【24h】

Numerical Analysis of Thermal Effect in Aluminum Alloy by Monopulse Laser

机译:单脉冲激光对铝合金热效应的数值分析

获取原文

摘要

A spatial axisymmetric finite element model is established to investigate the distribution characteristics of temperature field that monopulse millisecond laser act on aluminum alloy. The thermal process of laser acting on aluminum alloy (melting, gasification and temperature drop) is simulated. Using the specific quivalent heat capacity method to simulate the solid-liquid, liquid-gas phase transition of aluminum alloy, and considering the differences of thermal physical parameters between different states (solid-liquid, liquid-gas) of aluminum alloy in the process of numerical simulation. The distribution of temperature field of aluminum alloy caused by the change of energy density, pulse width and spot radius of monopulse millisecond laser are investigated systematically by using numerical simulation model. The numerical results show that the temperature of target no longer rises after reaching the target gasification. Given the pulse width and spot radius, the temperature of target rise as the energy density increases, the laser intensity distribution is gaussian, so the temperature distribution of the target surface also shows Gaussian. The energy absorption mechanism of aluminum alloy is surface absorption mechanism, the temperature gradient in axial of the target is much lager than the temperature gradient in radial of the target surface, so the temperature rise in axial only exists a thin layer of target surface. Given the energy density and spot radius, as the pulse width increases, the power density of laser decreases, therefore the temperature of target center point decreases as the pulse width increases, and the temperature difference becomes small. As the pulse width decreases, the heat transfer in axial reduce, the deposition of energy enhances on the surface. Given the energy density and pulse width, the distribution of the temperature is enlarged as the spot radius increases, but the distribution of the temperature in axial is independent of the spot radius.
机译:建立了空间轴对称有限元模型,研究了单脉冲毫秒激光作用于铝合金的温度场分布特征。模拟了激光作用在铝合金上的热过程(熔化,气化和温度下降)。使用比当量热容法模拟铝合金的固液,气液相转变,并考虑了铝合金不同状态(固,液,气)之间的热物理参数差异。数值模拟。利用数值模拟模型,系统地研究了由单脉冲毫秒激光的能量密度,脉冲宽度和光斑半径的变化引起的铝合金温度场的分布。数值结果表明,达到目标气化后,目标温度不再升高。给定脉冲宽度和光斑半径,目标温度随能量密度的增加而升高,激光强度分布为高斯分布,因此目标表面的温度分布也呈高斯分布。铝合金的能量吸收机理是表面吸收机理,靶材轴向的温度梯度比靶材表面径向的温度梯度大得多,因此轴向的温度升高仅存在靶材表面的薄层。在给定能量密度和光斑半径的情况下,随着脉冲宽度的增加,激光的功率密度降低,因此目标中心点的温度随着脉冲宽度的增加而降低,并且温差变小。随着脉冲宽度的减小,轴向的传热减少,能量在表面的沉积增加。在给定能量密度和脉冲宽度的情况下,温度分布随光斑半径的增加而增大,但轴向温度分布与光斑半径无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号