首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >NUMERICAL STUDY ON INCREASED ENERGY DENSITY FOR THE DLN MICROMIX HYDROGEN COMBUSTION PRINCIPLE
【24h】

NUMERICAL STUDY ON INCREASED ENERGY DENSITY FOR THE DLN MICROMIX HYDROGEN COMBUSTION PRINCIPLE

机译:DLN缩微氢燃烧原理提高能量密度的数值研究

获取原文

摘要

Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NO_x (DLN) hydrogen combustion. Thus, the development of DLN hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel is being developed since years to significantly reduce NO_x-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NO_x-emissions due to a very short residence time of reactants in the flame region of the micro-flames. For the low NO_x Micromix hydrogen application the paper presents a numerical study showing the further potential to reduce the number of hydrogen injectors by increasing the hydrogen injector diameter significantly by more than 350% resulting in an enlarged diffusion-type flame size. Experimental data is compared to numerical results for one configuration with increased hydrogen injector size and two different aerodynamic flame stabilization design laws. The applied design law for aerodynamic stabilization of the miniaturized flamelets is scaled according to the hydrogen injector size while maintaining equal thermal energy output and significantly low NO_x emissions. Based on this parameter variation study the impact of different geometric parameters on flow field, flame structure and NO_x formation is investigated by the numerical study. The numerical results show that the low NO_x emission characteristics and the Micromix flame structure are maintained at larger hydrogen injector size and reveal even further potential for energy density increase and a reduction of combustor complexity and production costs.
机译:结合使用可再生能源进行生产,氢代表了未来低排放发电中可能的替代燃气轮机燃料。由于与其他燃料(例如天然气)相比,氢的物理性质差异很大,因此,完善的燃气轮机燃烧系统无法直接应用于干式低NO_x(DLN)氢燃烧。因此,DLN氢燃烧技术的发展对于氢燃料燃气轮机的未来是必不可少且具有挑战性的任务。多年来,人们一直在开发用于氢燃料的DLN Micromix燃烧原理,以显着减少NO_x排放。该燃烧原理基于空气和气态氢的错流混合,后者在多个小型扩散型火焰中发生反应。该燃烧原理的主要优点是固有的反闪安全性,以及由于反应物在微火焰的火焰区域中停留时间非常短而导致的NO_x排放量低。对于低NO_x Micromix氢气的应用,本文提供了一个数值研究,表明通过将氢气喷射器直径显着增加350%以上,从而导致扩散型火焰尺寸增大,进一步减少氢气喷射器的潜力。将实验数据与具有增加的氢气喷射器尺寸和两种不同的气动火焰稳定设计定律的一种配置的数值结果进行比较。在保持相等的热能输出和极低的NO_x排放量的同时,根据氢气喷射器的尺寸来缩放适用于微型火焰的空气动力学稳定化的设计规则。在此参数变化研究的基础上,通过数值研究研究了不同几何参数对流场,火焰结构和NO_x形成的影响。数值结果表明,在较大的氢气喷射器尺寸下,仍具有较低的NO_x排放特性和Micromix火焰结构,并揭示了进一步提高能量密度和降低燃烧器复杂性以及降低生产成本的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号