首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >INVESTIGATION ON ANTI-STALL RING AERODYNAMIC PERFORMANCE IN AN AXIAL FLOW FAN
【24h】

INVESTIGATION ON ANTI-STALL RING AERODYNAMIC PERFORMANCE IN AN AXIAL FLOW FAN

机译:轴流风机抗失速环气动性能的研究

获取原文

摘要

Railway tunnel and metropolitan metro system ventilation fans are subjected to positive and negative pressure pulses. As a train travels along a tunnel it drives air down the tunnel. This creates a 'piston effect' that results in positive and negative pressure pulses on the ventilation fans. A pressure pulse effect transiently drives a ventilation fan to a higher pressure operating point. If the operating point is beyond the fan's pressure developing capability, there is a risk it may stall. Tunnel ventilation fan designers classically utilise a stabilisation ring to stabilise the fan's characteristic and thus mitigate the mechanical consequences of driving a fan into stall. A stabilisation ring consists of an annular chamber that is incorporated into the fan casing over the fan blade's leading edge. As a tip-limited axial fan approaches stall, boundary layer fluid centrifuges up the blade. The fan stalls at the point when flow inside the annulus reverses direction in the blade tip region. The stabilisation ring provides an annular chamber into which this fluid may flow. It incorporates a set of vanes that redirect the reverse flow into an axial direction, and then reintroduce it into the main-stream flow up-stream of the fan blade leading edge. Although effective in stabilising the fan's characteristic, stabilisation rings typically reduce fan efficiency by three per cent, and consequently are becoming progressively less acceptable as required minimum fan efficiencies increase. The reported research combines experimental measurements of overall fan performance with and without a fitted stabilisation ring and a numerical analysis of the flow-field within the stabilisation ring. Visualisation of the flow-field within the stabilisation ring provides an insight into the physical flow mechanisms that enable the stabilisation ring to stabilise the fan's characteristic. A conclusion of the research is that at the fan's peak efficiency operating point, flow through the stabilisation ring separated from the stabilisation ring vanes. Therefore, redesigning the vanes within the stabilisation ring to avoid separated flow offers the potential to eliminate this aerodynamic loss mechanism, thus reducing the efficiency loss classically associated with applying a stabilisation ring.
机译:铁路隧道和都市地铁系统的通风风扇会受到正负脉冲的作用。火车沿着隧道行驶时,它将空气向下推动。这会产生“活塞效应”,从而在通风风扇上产生正压力脉冲和负压力脉冲。压力脉冲效应会暂时将通风风扇驱动到更高的工作压力点。如果工作点超出了风扇的压力承受能力,则可能会失速。隧道通风风扇的设计人员通常使用稳定环来稳定风扇的特性,从而减轻驱动风扇进入失速状态的机械后果。稳定环包括一个环形腔,该环形腔在风扇叶片前缘的上方并入风扇壳体。当受尖端限制的轴流风扇接近失速时,边界层流体会在叶片上方离心。当环形内部的流动在叶片尖端区域中的方向反向时,风扇停转。稳定环提供了一种环形腔,该流体可以流入该环形腔中。它包含一组叶片,这些叶片将反向流重定向到轴向方向,然后将其重新引入到风扇叶片前缘上游的主流中。尽管有效地稳定了风扇的性能,稳定环通常将风扇效率降低了3%,因此,随着所需最低风扇效率的提高,稳定环逐渐变得越来越难以接受。报道的研究结合了有无稳定环的情况下风扇整体性能的实验测量值以及稳定环内流场的数值分析。稳定环内流场的可视化可深入了解使稳定环稳定风扇特性的物理流动机制。研究的结论是,在风扇的最高效率工作点处,流过与稳定环叶片分离的稳定环。因此,重新设计稳定环内的叶片以避免分开的流动提供了消除这种空气动力损失机制的潜力,从而减少了与应用稳定环传统上相关的效率损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号