首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >BAYESIAN BELIEF NETWORK FOR ROBUST ENGINE DESIGN AND ARCHITECTURE SELECTION
【24h】

BAYESIAN BELIEF NETWORK FOR ROBUST ENGINE DESIGN AND ARCHITECTURE SELECTION

机译:贝叶斯信任网络用于鲁棒引擎设计和架构选择

获取原文

摘要

Designing propulsion system architectures to meet next generation requirements requires many tradeoffs be made. These trades are often between performance, risk, and cost. For example, the core of an engine is the most expensive and highest risk area of a propulsion system design. However, a new core design provides the greatest flexibility in meeting future performance requirements. The decision to upgrade or redesign the core must be justified by comparison with other lower risk options. Furthermore, for turboshaft applications, the choice of compressor, whether axial or centrifugal, is a major decision and trade with the choice being heavily driven by both current and projected weight and performance requirements. This problem is confounded by uncertainty in potential benefits of technologies or future performance of components. To address these issues this research proposes the use of a Bayesian belief network (BBN) to extend the more traditional robust engine design process. This is done by leveraging forward and backward inference to identify engine upgrade paths that are robust to uncertainty in requirements performance. Prior beliefs on the different scenarios and technology uncertainty can be used to quantify risk. Forward inference can be used to compare different scenarios. The problem will be demonstrated using a two-spool turboshaft architecture modeled using the Numerical Propulsion System Simulation (NPSS) program. Upgrade options will include off the shelf, derivative engine (fixed core) with no technologies, derivative engine with new technologies, a new engine with no technologies, and a new engine with new technologies. The robust design process with a BBN will be used to identify which engine cycle and upgrade scenario is needed to meet performance requirements while minimizing cost and risk. To demonstrate how the choice of upgrade and cycle change with changes in requirements, studies are performed at different horsepower, ESFC, and power density requirements.
机译:设计推进系统架构以满足下一代需求需要做出许多权衡。这些交易通常介于性能,风险和成本之间。例如,发动机的核心是推进系统设计中最昂贵,风险最高的领域。但是,新的核心设计在满足未来性能要求方面提供了最大的灵活性。与其他较低风险的选择相比,升级或重新设计核心的决定必须是合理的。此外,对于涡轮轴应用,无论是轴向压缩机还是离心压缩机,压缩机的选择都是主要的决定和选择,当前和预计的重量和性能要求在很大程度上决定了压缩机的选择。技术的潜在利益或组件的未来性能不确定性使这个问题感到困惑。为了解决这些问题,本研究建议使用贝叶斯信念网络(BBN)来扩展更传统的鲁棒性发动机设计过程。这是通过利用前向和后向推断来确定对需求性能不确定性具有鲁棒性的引擎升级路径来完成的。对不同场景和技术不确定性的先前信念可以用来量化风险。前向推断可用于比较不同的方案。该问题将通过使用数值推进系统仿真(NPSS)程序建模的双涡旋涡轮轴架构来证明。升级选项将包括现成的,不具有技术的衍生引擎(固定核心),具有新技术的衍生引擎,不具有技术的新引擎以及具有新技术的新引擎。带有BBN的稳健设计流程将用于确定满足性能要求所需的发动机周期和升级方案,同时将成本和风险降至最低。为了演示升级和周期的选择如何随需求的变化而变化,在不同的功率,ESFC和功率密度要求下进行了研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号