首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >LEMCOTEC - IMPROVING THE CORE-ENGINE THERMAL EFFICIENCY
【24h】

LEMCOTEC - IMPROVING THE CORE-ENGINE THERMAL EFFICIENCY

机译:LEMCOTEC-提高核心引擎的热效率

获取原文

摘要

This paper describes the research carried out in the European Commission co-funded project LEMCOTEC (Low Emission Core Engine Technology), which is aiming at a significant increase of the engine overall pressure ratio. The technical work is split in four technical sub-projects on ultra-high pressure ratio compressors, lean combustion and fuel injection, structures and thermal management and engine performance assessment. The technology will be developed at subsystem and component level and validated in test rigs up to TRL5. The developed technologies will be assessed using three generic study engines (i.e. regional turbofan, mid-size open rotor, and large turbofan) representing about 90% of the expected future commercial aero-engine market. Two additional study engines from the previous NEWAC project will be used for comparison. These are based on intercooled and intercooled-recuperated future engine concepts. The compressor work is targeting efficiency, stability margin and flow capacity by improved aerodynamic design. High-pressure and intermediate-pressure compressors are addressed. The mechanical and thermo-mechanical functions, including the variable-stator-systems, will be improved. Axial-centrifugal compressors with impeller and centrifugal diffuser are under investigation too. Three lean burn fuel injection systems are developed to match the technology to the corresponding engine pressure levels. These are the PERM (Partially Evaporating Rapid Mixing), the MSFI (Multiple Staged Fuel Injection) and the advanced LDI (Lean Direct Injection) combustion systems. The air flow and combustion systems are investigated. The fuel control systems are adapted to the requirements of the ultra-high pressure engines with lean fuel injection. Combustor-turbine interaction will be investigated. A fuel system analysis will be performed using CFD methods. Improved structural design and thermal management is required to reduce the losses and to reduce component weight. The application of new materials and manufacturing processes, including welding and casting aspects, will be investigated. The aim is to reduce the cooling air requirements and improve turbine aerodynamics to support the high-pressure engine cycles. The final objective is to have innovative ultra-high pressure-ratio core-engine technologies successfully validated at subsystem and component level. Increasing the thermal efficiency of the engine cycles relative to year 2000 in-service engines with OPR of up to 70 (at max. condition) is an enabler and key lever of the core-engine technologies to achieve and even exceed the ACARE 2020 targets on CO2, NOx and other pollutant emissions: 1. 20 to 30 % CO2 reduction at the engine level, exceeding both, the ACARE 15 to 20% CO2 reduction target for the engine and subsequently the overall 50% committed CO2 and the fuel burn reduction target on system level (including the contributions from operations and airframe improvements), 2. 65 to 70 % NOx reduction at the engine level (CAEP/2) to attain and exceed the ACARE objective of 80% overall NOx reduction (including the contributions from both, operational efficiency and airframe improvement), reduction of other emissions (CO, UHC and smoke/particulates) and 3. Reduction of the propulsion system weight (engine including nacelle without pylon).
机译:本文介绍了在欧盟委员会共同资助的项目LEMCOTEC(低排放核心发动机技术)中进行的研究,该项目的目的是显着提高发动机的总压力比。技术工作分为四个技术子项目,分别是超高压比压缩机,稀薄燃烧和燃料喷射,结构和热管理以及发动机性能评估。该技术将在子系统和组件级别开发,并在高达TRL5的测试平台中得到验证。将使用三种通用研究引擎(即区域性涡轮风扇,中型开放式转子和大型涡轮风扇)对已开发的技术进行评估,这三种发动机约占预期的未来商用航空发动机市场的90%。比较之前的NEWAC项目中的另外两个研究引擎。这些基于将来的中冷和中冷再充量发动机概念。通过改进的空气动力学设计,压缩机的工作目标是效率,稳定性裕度和流量。解决了高压和中压压缩机。机械和热机械功能,包括可变定子系统,将得到改善。带有叶轮和离心扩压器的轴流离心压缩机也在研究中。开发了三种稀薄燃烧燃料喷射系统,以使该技术与相应的发动机压力水平相匹配。这些是PERM(部分蒸发的快速混合),MSFI(多级燃料喷射)和先进的LDI(精益直接喷射)燃烧系统。研究了空气流动和燃烧系统。燃油控制系统适合采用稀薄燃油喷射的超高压发动机的要求。将研究燃烧器与涡轮的相互作用。燃油系统分析将使用CFD方法进行。需要改进的结构设计和热管理,以减少损耗和减轻部件重量。将研究新材料的应用和制造工艺,包括焊接和铸造方面。目的是减少冷却空气需求并改善涡轮空气动力学,以支持高压发动机循环。最终目标是拥有在子系统和组件级别成功验证的创新超高压比核心发动机技术。与OPR高达70(在最大工况下)的2000年在役发动机相比,提高发动机循环的热效率是核心发动机技术实现甚至超越ACARE 2020目标的推动力和关键杠杆。 CO2,NOx和其他污染物排放量:1.在发动机级别将CO2减少20%至30%,超过两项目标,即ACARE发动机将CO2减少15%至20%的目标,并随后实现总的50%承诺CO2和减少燃料燃烧的目标在系统级别(包括来自运营和机身改进的贡献),在发动机级别(CAEP / 2)上减少2-65%至70%的NOx,以达到并超过ACARE的目标,即将NOx总体减少80%(包括来自两者的贡献) ,运营效率和机身改进),其他排放物(CO,UHC和烟气/微粒)的减少以及3.推进系统重量的减轻(发动机包括没有吊架的机舱)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号