首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >SIMULATION OF PARTICLE-LADEN FLOWS IN A LARGE CENTRIFUGAL FAN FOR EROSION PREDICTION
【24h】

SIMULATION OF PARTICLE-LADEN FLOWS IN A LARGE CENTRIFUGAL FAN FOR EROSION PREDICTION

机译:大型离心风机侵蚀预测的颗粒流动模拟。

获取原文

摘要

Regulations require that industrial fans utilised in power generation, cement and steel applications must operate as part of a process that produces erosive particles. Over time these erosive particles erode centrifugal fan impeller blades, changing the blade profile and consequently, degrading fan performance. To replace the eroded impellers, operators must shut down the process. If one must replace an impeller between scheduled maintenance intervals, the associated costs with lost production become significant. Consequently, the industrial fan community is interested in predicting the erosion, and ultimately, a fan impeller's in-service life when operating in an erosive environment. Industrial fan designers face challenges when attempting to predict impeller erosion. Industrial centrifugal fan impeller blades are routinely constructed from cambered plate, usually with backward or forward sweeping, with the inevitable consequence of separated flow regions. This separated flow is within a highly three dimensional flow-field making difficult an accurate prediction of the flow-field though an impeller with cambered plate blades. Assuming that one can accurately predict this three dimensional flow-field one must then go on to simulate the erosive particles' trajectory. This paper builds on the work of other scholars who have developed a computational approach that accurately predicts the flow-field though an impeller with cambered plate blades. The authors report an unsteady numerical analysis with the finite volume open-source code OpenFOAM. The analysis was undertaken using a moving mesh technique, based on Arbitrary Mesh Interface technology. Reynolds Averaged Navier-Stokes equations for incompressible flow were solved with a nonlinear first order turbulence closure. They modelled particle transport and dispersion using a Lagrangian approach coupled with a Particle Cloud Tracking (PCT) model. Understanding the particle size effect facilitates identifying critical regions on the impeller blades most prone to erosion for each combination of particle sizes. Identifying the most critical regions thus provides a basis for modifying overall impeller and individual blade geometry in an effort to reduce susceptibility to erosion. This then increases in-service life, and consequently the time between maintenance intervals.
机译:法规要求在发电,水泥和钢铁应用中使用的工业风机必须作为产生侵蚀性颗粒的过程的一部分进行操作。随着时间的流逝,这些侵蚀性颗粒会腐蚀离心风扇叶轮的叶片,从而改变叶片的轮廓,从而降低风扇的性能。要更换腐蚀的叶轮,操作员必须关闭该过程。如果必须在预定的维护间隔之间更换叶轮,则与生产损失相关的成本将变得可观。因此,工业风扇社区有兴趣预测腐蚀,并最终预测在腐蚀性环境中运行时风扇叶轮的使用寿命。工业风机设计师在尝试预测叶轮腐蚀时面临挑战。工业离心风机叶轮叶片通常由弧形板构成,通常具有向后或向前吹扫的趋势,不可避免地会导致流动区域分离。这种分离的流处于高三维流场内,这使得很难通过带有弧形板叶片的叶轮准确预测流场。假设人们可以准确地预测这三维流场,那么就必须继续模拟侵蚀性粒子的轨迹。本文以其他学者的工作为基础,他们已经开发出一种计算方法,可以准确预测通过带有弧形板叶片的叶轮的流场。作者报告了使用有限体积的开源代码OpenFOAM进行的不稳定数值分析。使用基于任意网格接口技术的移动网格技术进行了分析。用非线性一阶湍流闭环求解不可压缩流的雷诺平均Navier-Stokes方程。他们使用拉格朗日方法和粒子云跟踪(PCT)模型对粒子的传输和扩散进行建模。了解粒径效应有助于确定叶轮叶片上对于每种粒径组合最容易腐蚀的关键区域。因此,确定最关键的区域为修改整个叶轮和单个叶片的几何形状提供了基础,以减少腐蚀的可能性。这样可以延长使用寿命,从而延长维护间隔之间的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号