首页> 外文会议>ASME international mechanical engineering congress and exposition >Numerical solution of heat transfer during solidification of an encapsulated phase change material
【24h】

Numerical solution of heat transfer during solidification of an encapsulated phase change material

机译:封装相变材料凝固过程中传热的数值解

获取原文

摘要

Macro encapsulation techniques have gained considerable attention in latent heat storage systems for solar energy applications in order to improve the overall energy conversion efficiency in solar thermal power plants. However the heat transfer mechanisms that govern the charging and discharging processes at high operating temperatures are still under development and represent an important aspect in the thermal energy storage design process. This study presents a numerical solution of the heat transfer and phase change that occurs during the solidification process of a phase change material (PCM) encapsulated in a spherical container. A transient two-dimensional axisymmetric mathematical model was solved using the control volume discretization approach along with the enthalpy-porosity method to track the melting front. A spherical shell of thickness t, under the gravitational field is completely filled with liquid PCM. For time t>0, a constant temperature boundary condition T_w, which is lower than the phase change temperature of the PCM, is imposed at the outer surface of the shell. A comprehensive analysis is presented in order to assess the role of the capsule size, buoyancy-driven flow in the liquid phase, and shell outer surface temperature on the thermal performance of the system. Results show that with the increase of Stefan number the solidification rate is enhanced. A reduction of 39.25% in total solidification time is predicted when the Stefan number changed from 0.095 to 0.143. Finally a generalized correlation for the solid mass fraction during solidification is obtained based on a combination of Fourier and Stefan numbers and a dimensionless material parameter.
机译:宏封装技术已经在用于太阳能应用的潜热存储系统中引起了相当大的关注,以提高太阳能热电厂中的整体能量转换效率。然而,在高工作温度下控制充电和放电过程的传热机制仍在开发中,并且代表了热能存储设计过程中的一个重要方面。这项研究提出了一种热传递和相变的数值解决方案,该解决方案是在封装在球形容器中的相变材料(PCM)的凝固过程中发生的。瞬态二维轴对称数学模型使用控制体积离散化方法和焓-孔隙率方法追踪熔解前沿来求解。在重力场下,厚度为t的球形壳完全被液态PCM填充。对于时间t> 0,在壳体的外表面施加恒定温度边界条件T_w,该温度边界条件T_w低于PCM的相变温度。为了评估胶囊尺寸,液相中浮力驱动的流量以及外壳外表面温度对系统热性能的作用,进行了全面的分析。结果表明,随着Stefan数的增加,凝固速率提高。当Stefan数从0.095更改为0.143时,预计总固化时间将减少39.25%。最后,基于傅立叶数和Stefan数以及无量纲的材料参数的组合,获得了凝固过程中固体质量分数的广义相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号