首页> 外文会议>ASME power conference >DESIGN FACTORS FOR AVOIDING FAC EROSION IN HRSG LOW PRESSURE EVAPORATORS
【24h】

DESIGN FACTORS FOR AVOIDING FAC EROSION IN HRSG LOW PRESSURE EVAPORATORS

机译:避免HRSG低压蒸发器中的面蚀的设计因素

获取原文

摘要

Two types of flow-driven wear phenomena are a frequent source of failures in Heat Recovery Steam Generators (HRSGs): Flow-Accelerated Corrosion (FAC) and Liquid-Droplet Impingement (LDI). The two mechanisms combined are also known by an older term, erosion-corrosion. This better describes what can be viewed as a continuum of mechanisms, driven by chemistry and/or fluid velocity, which lead to wear and consequent thinning of pipe walls. One common failure location in the HRSG is in Low Pressure (LP) Evaporator circuits, both in regions with two-phase and with single-phase flow conditions. Replacement and/or redesign of the LP Evaporator system is often required. Water chemistry is known to be a key factor in determining the risk of FAC; it can be modified if required during operation to potentially affect wear rates. Another key factor, determined at the design stage, is the chrome content of the steel. The emphasis here is on evaluating other design factors, particularly local process conditions throughout the LP Evaporator circuit, that affect susceptibility to FAC and LDI. LP systems today often are designed to operate at very low pressures (< 3 barg, 45 psi) with the goal of extracting the last practical amount of thermal energy from gas turbine exhaust gas. Furthermore, many combined cycle power plants (such as those in combined power and desalinization service) have variable loads that lead to wide variations in LP operating pressures. The overall bulk fluid circulation in natural circulation LP Evaporators of several different HRSG designs is evaluated over a range of operating conditions. These circulation calculations are sensitive to small changes in heat transfer and load conditions at low pressures, due to the high void fraction in the two-phase region. An accurate estimation of void fraction is therefore required to determine local process conditions (flow velocities and flow regimes) in this region. The limitations of some of the common methods for estimating void fractions, such as asymptotic values for high void fractions at low pressures, are considered. The evaporator process conditions determined by modeling are used as inputs to assess the potential for wear by FAC and/or LDI using several established methods (Kastner, Sanchez-Caldera). The results are compared with case studies from field investigations to assess if wall thinning encountered in actual HRSG service can be correlated with certain design factors.
机译:两种类型的流动驱动磨损现象是热回收蒸汽发生器(HRSG)中常见的故障根源:流动加速腐蚀(FAC)和液体液滴撞击(LDI)。较早的术语腐蚀-腐蚀也将这两种机制结合在一起。这更好地描述了可以看作是由化学和/或流体速度驱动的机制的连续体,这些机制导致磨损以及随之而来的管壁变薄。 HRSG中的一个常见故障点是在低压(LP)蒸发器回路中,该回路既有两相流状态,也有单相流状态。经常需要更换和/或重新设计低压蒸发器系统。众所周知,水化学是确定FAC风险的关键因素。如果需要,可在操作期间对其进行修改,以潜在地影响磨损率。在设计阶段确定的另一个关键因素是钢中的铬含量。这里的重点是评估影响FAC和LDI敏感性的其他设计因素,尤其是整个LP蒸发器回路中的局部工艺条件。当今的LP系统通常设计为在极低的压力(<3 barg,45 psi)下运行,目的是从燃气轮机废气中提取最后的实际热能。此外,许多联合循环发电厂(例如联合电力和脱盐服务的联合发电厂)具有可变的负载,从而导致低压运行压力发生较大变化。在各种运行条件下,对几种不同HRSG设计的自然循环LP蒸发器中的总体流体循环进行了评估。由于两相区域中的空隙率较高,因此这些循环计算对低压下的传热和负载条件的微小变化非常敏感。因此,需要准确估算空隙率才能确定该区域的局部工艺条件(流速和流态)。考虑了一些估算空隙率的常用方法的局限性,例如低压下高空隙率的渐近值。通过建模确定的蒸发器工艺条件用作输入,以使用几种已建立的方法(Kastner,Sanchez-Caldera)评估FAC和/或LDI的潜在磨损。将结果与现场调查的案例研究进行比较,以评估实际HRSG服务中遇到的壁薄是否可以与某些设计因素相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号