首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >MODELLING OF A TURBULENT JET IN A GAS CROSSFLOW
【24h】

MODELLING OF A TURBULENT JET IN A GAS CROSSFLOW

机译:气体横流中湍流射流的建模

获取原文

摘要

The first part of this work presents a comparison of predictions obtained with several two-equation type RANS turbulence models commonly used in industry against experimental data obtained by Whitelaw et al. All examined models yield a relatively poor match in the flow region very close to the wall; agreement with the measurements improves significantly when moving further away from the wall. This concerns both the internal normal stress profiles and the average velocity profiles, the latter show improved prediction of the recirculation zone area when moving further into the main stream. Downstream behaviour for both models shows an excellent match more than 6 diameters away from the jet inlet, defined as the region after which the flow essentially resumes its normal duct behaviour. Expanding upon these RANS results, another series of simulations using LES modelling with the standard Smagorinsky SGS model was conducted using the same grid and compared to the RANS-based results. Although performance in the most complex flow areas was slightly improved over RANS, this was at the cost of an increase of computation time by almost a factor of 6. The next stage involved developing a code based on the model for two-phase flow described in to predict the atomisation pattern for a non-vaporising (or "cold") flow based on the parameters of the previous simulations. This model implements transport equations for the liquid mass fraction and the average surface area per unit mass along with an equation for average density; resulting in an entirely Eulerian model which can be used to predict atomisation from first principles. Current work consists in development of additional source terms describing vaporisation in a strongly turbulent environment and further coupling with a combustion model applicable to the combustion chamber of an industrial gas turbine.
机译:该工作的第一部分呈现了使用常用于Whitelaw等人获得的实验数据的两种等式rans湍流模型获得的预测的比较。所有检查的模型都在流量区域中产生相对较差的匹配非常靠近墙壁;当远离墙壁移动时,与测量的协议会显着提高。这涉及内部正常应力分布和平均速度轮廓,后者在进一步进入主流时显示出改善的再循环区域区域的预测。两种模型的下游行为显示出远离喷射入口的6大于6直径的优异匹配,定义为该区域,之后流动基本上恢复其正常管道行为。在这些RAN结果上扩展,使用相同的网格进行了使用LES建模的另一系列模拟,并使用相同的网格进行并与基于RAN的结果相比。虽然在最复杂的流量区域的性能略微改善了RANS,但这是计算时间的增加几乎时间为6的成本。下一阶段涉及基于用于两相流模型的代码开发代码基于先前模拟的参数预测非汽化(或“冷”)流动的雾化模式。该模型实现液体质量分数的传输方程和每单位质量的平均表面积以及平均密度的等式;导致完全欧拉模型,可用于预测第一原理的雾化。目前的工作包括在强大湍流环境中的蒸发和进一步联接的源术语的发展,以及适用于工业燃气轮机的燃烧室的燃烧模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号