首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >OPTIMIZATION OF ORGANIC RANKINE CYCLES FOR OFF-SHORE APPLICATIONS
【24h】

OPTIMIZATION OF ORGANIC RANKINE CYCLES FOR OFF-SHORE APPLICATIONS

机译:离岸应用中有机RANKINE循环的优化

获取原文
获取外文期刊封面目录资料

摘要

In off-shore oil and gas platform efficiency, the reliability and fuel flexibility are the major concerns when selecting the gas turbine to support the electrical and mechanical demand on the platform. In order to fulfill these requirements, turbine inlet temperature and pressure ratio are not increased up to the optimal values and one or more redundant gas turbines may be employed. With increasing incentives for reducing the CO_2 emissions off-shore, improving the thermal efficiency has become a focus area. Due to the peculiar low turbine outlet temperature and due to space and weight constraints, a steam bottoming cycle is not a convenient solution. On the contrary, organic Rankine cycles (ORCs) present the benefits of high simplicity and compactness. Furthermore, the working fluid can be selected considering the temperature profile at which the heat is supplied; hence the heat transfer process and the thermal efficiency of the cycle can be maximized. This paper is aimed at finding the most optimal ORC tailored for off-shore applications using an optimization procedure based on the genetic algorithm. Numerous working fluids are screened through, considering mainly thermal efficiency, but also other characteristics of the fluids, e.g. stability, environmental and human health impacts, and safety issues. Both supercritical and subcritical ORCs are included in the analysis. The optimization procedure is first applied to a conservative ORC where the maximum pressure is limited to 20 bar. Subsequently the optimal working fluid is identified by removing the restriction on the maximum pressure. Different limits on hazards and global warming potential (GWP) are also set. The study is focused on the SGT-500 gas turbine installed on the Draugen platform in the Norwegian Sea. The simulations suggest that, when a high hazard is accepted, cyclohexane is the best solution. With a turbine inlet pressure limit of 20 bar, the combined gas turbine-ORC system presents an efficiency of 43.7%, corresponding to an improvement of 11.9%-points with respect to the gas turbine efficiency. With no upper pressure boundary, cyclohexane at 55.5 bar is the preferable working fluid with a combined thermal efficiency of 44.3%. The supercritical CO_2 cycle with a maximum pressure of 192.9 bar is found to be the best alternative if an extremely low hazard is required.
机译:在海上石油和天然气平台效率方面,可靠性和燃料灵活性是选择燃气轮机来支持平台上的电气和机械需求时的主要问题。为了满足这些要求,涡轮入口温度和压力比没有增加到最佳值,并且可以使用一个或多个冗余燃气涡轮。随着减少离岸CO 2排放的动机不断增强,提高热效率已成为重点领域。由于涡轮出口温度特别低,并且由于空间和重量的限制,蒸汽底部循环不是一个方便的解决方案。相反,有机朗肯循环(ORC)具有高度简单和紧凑的优势。此外,可以考虑供热时的温度曲线来选择工作流体;例如,在工作温度范围内。因此,可以最大程度地提高循环的传热过程和热效率。本文旨在通过基于遗传算法的优化程序,为海上应用量身定制最佳的ORC。筛选许多工作流体,主要考虑热效率,但也要考虑流体的其他特性,例如:稳定性,环境和人类健康影响以及安全问题。分析中包括超临界和次临界ORC。最优化程序首先应用于保守的ORC,其中最大压力限制为20 bar。随后,通过消除对最大压力的限制来确定最佳工作流体。还设定了危害和全球变暖潜能值(GWP)的不同限制。该研究的重点是安装在挪威海Draugen平台上的SGT-500燃气轮机。模拟表明,当高危险性被接受时,环己烷是最好的解决方案。在涡轮机进气压力极限为20 bar的情况下,燃气轮机-ORC组合系统的效率为43.7%,相对于燃气轮机效率提高了11.9%。在无上限压力的情况下,55.5 bar的环己烷是最佳的工作流体,综合热效率为44.3%。如果需要极低的危害,则最大压力为192.9 bar的超临界CO_2循环是最佳选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号