首页> 外文会议>TMS annual meeting exhibition >CHARACTERIZATION AND MODELING OF TRAINED NITINOL TORSIONAL ACTUATORS UNDER REVERSE BIAS LOADS
【24h】

CHARACTERIZATION AND MODELING OF TRAINED NITINOL TORSIONAL ACTUATORS UNDER REVERSE BIAS LOADS

机译:反向偏置载荷下经过训练的镍钛诺扭转执行器的特性和建模

获取原文

摘要

Shape Memory Alloy actuator components are typically designed and trained to operate against loads in a single direction. This may lead to overly complex actuator designs, where devices such as ratchets or large biasing forces are used to isolate the shape memory alloy components from exposure to external loads of an uncertain direction and magnitude while in service. An understanding of the effects of reverse bias loads on trained SMA actuator components may enable simpler designs, improved operation, and better control. In this paper the design and training of a representative NiTinol rotary actuator is described. The trained actuator is operated over a range of isobaric loads in both the trained and reverse bias directions and the actuators performance is quantified. The stability and characterization of the actuator's performance while working against loads in the trained direction are compared to its operation against reverse bias loads of increasing magnitude. Consistent and stable operation is shown for varying loads in the trained direction and for small reverse loads. At larger reverse loads, actuator performance begins to shift indicating the reverse bias is impacting the tube training. A method of characterization which identifies the magnitude of reverse loading that may be detrimental to the actuator's performance is proposed. A new model originally derived specifically to capture the effects of training on SMA tubes via the incorporation of constant transformation back-stresses is applied to the analysis of these tubes. An FEA implementation of the model is used to simulate tube actuation behavior against loads in the trained and reverse bias directions, and accuracy of the analysis is demonstrated.
机译:形状记忆合金致动器部件通常设计和培训以便在单个方向上进行负载。这可能导致过度复杂的执行器设计,其中诸如棘轮或大的偏置力的装置用于将形状记忆合金组分与在服务中的不确定方向和幅度的外部负载中隔开。理解训练的SMA致动器组件上的反向偏置载荷的影响可以实现更简单的设计,改进的操作和更好的控制。本文描述了代表性镍钛诺旋转致动器的设计和训练。培训的致动器在训练和反向偏置方向上的一系列不足负载中操作,并且致动器性能量化。将致动器的性能的稳定性和表征用于训练方向上的负载,与其抵抗幅度增加幅度的反向偏置负荷的操作。显示一致且稳定的操作显示在训练方向上的变化负载和小型反向载荷。在较大的反向负载下,执行器性能开始转换,表示反向偏置正在冲击管训练。提出了一种表征的方法,其识别可能对致动器性能有害的反向负载的大小。最初是专门衍生的新模型,该模型通过掺入恒定转化背应力掺入通过掺入恒定转化背部训练对SMA管的影响的应用应用于这些管的分析。该模型的FEA实现用于模拟对训练和反向偏置方向上的负载的管致动行为,并且对分析的准确性进行说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号