首页> 外文会议>International Conference on Virtual Rehabilitation >Is the room moving? Muscle responses following visual perturbations
【24h】

Is the room moving? Muscle responses following visual perturbations

机译:房间搬家了吗?视觉扰动后的肌肉反应

获取原文

摘要

Postural adjustments are essential for balance control and to reduce risk of falling. One emerging method to train reactive postural control consists in exposing individuals to safe and controlled destabilizing perturbations that intend to simulate changing conditions that can lead to falls. Studies using virtual reality suggest that visual perturbations engage mechanisms of motor adaptation, increase electrocortical activity and modulate balance performance. What is not yet clear is the impact of trunk and limb muscles activation on the postural adjustments responsible to maintain balance control. This paper aims to map the response of trunk and limb muscles to visual perturbations, and compare them to those of physical perturbations. Additionally, our study includes vertical perturbations (i.e. balance disturbances in the vertical plane) known to be a major cause of falling. Therefore, this paper also compares muscles responses to both horizontal and vertical perturbations. Fourteen healthy participants (ten males; age: 27±4; BMI: 23.8±2.6 kg/m2) stood on a moveable platform within a virtual reality system projecting visual scenes over a 360° dome-shaped screen such that the participant appeared to be standing in the middle of a room. Concomitantly, the electrical activity of tibialis anterior, gastrocnemius, rectus femoris, hamstring, rectus abdominis, paraspinal, external oblique and deltoid muscles was captured. Amid a larger protocol, this paper reports on randomly presented 1) visual perturbations; i.e. the virtual room moves during 0.35 seconds a distance corresponding to 14 cm in four directions (forward - FP, backward - BP, upward - UP, downward - DP), each repeated three times; and 2) physical perturbations (12cm displacement in one second) for the four directions and two sensory conditions: static camera (SC; virtual room remains static) and dynamic camera (DC; corresponding transitions in the visual scenery). We calculated three muscle activation parameters: onset latency, duration of activation, and magnitude. Separate 2-factor repeated-measures ANOVA were applied for each outcome measure across factors of perturbation direction (FP, BP, UP and DP) and condition (VIS, SC, DC). Forward visual perturbations led to longer onset latencies when compared to upward and downward visual perturbations (e.g. in the gastrocnemius: respectively, 443±56.6 ms vs. 326±39.6 ms and 334±51.1 ms, P<0.05). Duration of activation was longer following downward visual perturbations than after backward visual perturbations in the rectus femoris (respectively, 630±120 ms vs 335±81.2 ms, P<0.05). All lower limbs and the paraspinal muscles presented with a longer onset latency in response to visual perturbations in comparison to both types of physical perturbations (SC and DC) (P<0.05). The magnitude of activation following visual perturbations was smaller than both types of physical perturbations in all muscles (P<0.05). Duration of activation was also longer in the gastrocnemius following visual perturbations when compared to both SC and DC conditions of physical perturbations (P<0.05). Overall, magnitude of responses was often larger following horizontal perturbations in comparison to vertical perturbations. Our results suggest that visual perturbations alone activate limb and trunk muscles. Although perturbation direction seems to regulate the timing of response following visual perturbations in some limbs muscles, no differences were observed in the magnitude of activation within visual perturbations. Physical perturbations significantly increased EMG responses compared with visual perturbations. Overall, horizontal perturbations often led to faster and more intense responses than vertical perturbations. Our findings that different types of perturbations lead to more or less intense muscle responses and to different activation timing
机译:姿势调整对于平衡控制至关重要,并降低跌倒风险。一种培训反应性姿势控制的新兴方法包括将个人敞开个人以安全和控制的破坏性扰动,意图模拟可能导致落下的变化条件。使用虚拟现实的研究表明,视觉扰动接触电机适应机制,增加了电离活动和调制平衡性能。尚未清楚的是躯干和肢体肌肉激活对维持平衡控制的姿势调整的影响。本文旨在将树干和肢体肌肉的响应映射到视觉扰动,并将它们与物理扰动的比较。此外,我们的研究包括垂直扰动(即垂直平面中的平衡干扰),已知是落下的主要原因。因此,本文还将肌肉反应与水平和垂直扰动进行比较。十四个健康的参与者(十名男性;年龄:27±4; BMI:23.8±2.6千克/米 2 )在虚拟现实系统中突出一个可移动的平台,在360°圆顶形屏幕上投影视觉场景,以便参与者似乎站在房间的中间。兼顾,捕获了胫骨前,胃肠,直肠,股骨,腿筋,直肠腹部,肩胛骨,外倾斜肌的电动活性。在更大的协议中,本文报告了随机呈现的1)视觉扰动;即,虚拟房间在0.35秒内移动,四个方向对应于14厘米的距离(前向 - FP,向后 - BP,向上,向上,DP),每个都重复三次; 2)四个方向和两个感官条件的物理扰动(一秒钟位移):静态相机(SC;虚拟室仍然是静态的)和动态摄像机(DC;在视觉风景中的相应转换)。我们计算了三个肌肉激活参数:开始延迟,激活持续时间和幅度。在扰动方向(FP,BP,UP和DP)和条件(VIS,SC,DC)中,应用单独的2因素重复测量ANOVA。与向上和向下的视觉扰动相比(例如,在胃肠杆菌中的视觉扰动相比时,转发视觉扰动导致更长的起始延迟:443±56.6ms和334±51.1ms,P <0.05)。激活的持续时间比在向下视觉扰动之后的持续时间较长,而不是在直肠股骨中的倒退视觉扰动之后(分别为630±120 ms与335±81.2ms,P <0.05)。与两种类型的物理扰动(SC和DC)相比,响应视觉扰动而呈现较长的腹部和椎间肌,呈较长的开始延迟(P <0.05)。视觉扰动后的激活幅度小于所有肌肉中的两种类型的物理扰动(P <0.05)。与物理扰动的SC和直流条件相比,在视觉扰动后,活化持续时间也在胃肠肿瘤后较长(P <0.05)。总体而言,与垂直扰动相比,水平扰动后,应对响应的幅度往往较大。我们的结果表明,视觉扰动仅激活肢体和躯干肌肉。虽然扰动方向似乎调节了一些肢体肌肉中视觉扰动后的反应时机,但在视觉扰动内的激活幅度下没有观察到差异。与视觉扰动相比,物理扰动显着增加了EMG响应。总的来说,水平扰动通常导致比垂直扰动更快,更强烈的反应。我们的发现,不同类型的扰动导致或多或少强烈的肌肉反应以及不同的激活时间

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号