首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >INTERNAL COOLING CHANNELS DESIGN INVESTIGATIONS: AEROTHERMAL OPTIMISATION OF RIBBED U-BENDS
【24h】

INTERNAL COOLING CHANNELS DESIGN INVESTIGATIONS: AEROTHERMAL OPTIMISATION OF RIBBED U-BENDS

机译:内部冷却通道设计调查:带肋U形弯头的气动优化

获取原文

摘要

The design of turbine cooling systems remains one of the most challenging processes in engine development. Modern turbine cooling systems indeed invariably combine internal convection cooling with external film cooling in complex flow systems. The heat transfer and cooling processes are at the limit of current understanding and engine designers heavily rely on empirical tools and engineering judgment to produce new designs. These designs are moreover developed in the context of continuously increasing Turbine Entry Temperature (TET) as the latter leads to improvement of Specific Fuel Consumption (SFC). The present contribution fits into the frame of the ongoing FP7 ER-ICKA project. It focuses on achieving a significant progress in understanding turbine blade passages internal cooling systems by gathering high quality experimental data and by developing cooling state-of-the-art design capabilities based upon computer codes calibrated through these experimental data. In this context, the paper will describe the design optimisation and analysis work performed for two different internal cooling passages configurations, namely a static leading edge LP configuration passage (baseline experimentally tested at Stuttgart University) and a rotating mid-chord HP configuration passage (baseline experimentally tested at ONERA). The aim of the work was to develop a design methodology to optimise turbulence promoting ribs shape and arraying to improve the thermal behaviour of the internal cooling passages while avoiding excessive head loss. The optimisation was driven using decoupled rib design parameters for each ribbed wall to enhance flow interactions and maximise disturbances, to maximise potential increase in Heat Transfer Coefficients (HTCs). Any improvement in the thermal behaviour of the cooling system may indeed allow to either reduce the coolant mass flow rate requirements or increase the TET. To drive these optimisations, the ultimate target was hence to reduce the maximum blade metal temperature. To this end, suitable cost functions (objectives and constraints) have been derived and implemented. They will first be presented and discussed along with the parameterisations, so as to define the complete optimisation specification. The computational chain setup, among which the challenging mesh regeneration choices set based on a mesh dependence study will then be detailed. Validation of the CFD evaluation against the experimental results will be described for the static baseline configuration at least (rotating test measurements are still ongoing) and the optimisation results, which have led to significant gains in HTCs, will finally be analysed, data mining techniques allow to identify key parameters, path taken in the conception space and major trends.
机译:涡轮机冷却系统的设计仍然是发动机开发中最具挑战性的过程之一。实际上,在复杂的流动系统中,现代涡轮机冷却系统始终将内部对流冷却与外部薄膜冷却结合在一起。传热和冷却过程是当前了解的极限,发动机设计人员在很大程度上依靠经验工具和工程判断来产生新的设计。此外,这些设计是在不断提高涡轮机入口温度(TET)的背景下开发的,因为后者会改善单位燃料消耗量(SFC)。目前所做的贡献符合正在进行的FP7 ER-ICKA项目的框架。它致力于通过收集高质量的实验数据并根据通过这些实验数据校准的计算机代码开发冷却技术的最新设计能力,从而在理解涡轮叶片通道内部冷却系统方面取得重大进展。在此背景下,本文将描述针对两种不同的内部冷却通道配置(即静态前沿LP配置通道(在斯图加特大学进行实验测试的基准)和旋转中弦HP配置通道(基准))进行的设计优化和分析工作。在ONERA进行了实验测试)。这项工作的目的是开发一种设计方法,以优化湍流促进肋的形状和排列,以改善内部冷却通道的热性能,同时避免过多的压头损失。使用每个肋墙的去耦肋设计参数来驱动优化,以增强流动相互作用并最大程度地增加扰动,以最大程度地提高热传递系数(HTC)的潜在增加。冷却系统的热性能的任何改善实际上可以允许降低冷却剂质量流率要求或增加TET。为了推动这些优化,最终目标是降低刀片金属的最高温度。为此,已经得出并实施了合适的成本函数(目标和约束)。它们将首先与参数设置一起介绍和讨论,以便定义完整的优化规范。然后将详细介绍计算链设置,其中将详细介绍基于网格相关性研究的具有挑战性的网格再生选择集。至少将针对静态基准线配置(针对旋转测试测量仍在进行中)描述针对实验结果进行CFD评估的有效性,最终将分析导致HTC大幅增长的优化结果。以确定关键参数,在概念空间中采用的路径和主要趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号