首页> 外文会议>AIAA aerodynamic decelerator systems technology conference;AIAA lighter-than-air systems technology conference;AIAA balloon systems technology conference >Structural Analysis of a Large-Aperture Toroidal Balloon-Embedded Reflector with Membrane-Mounted Feed-Array: The ExaVolt Antenna
【24h】

Structural Analysis of a Large-Aperture Toroidal Balloon-Embedded Reflector with Membrane-Mounted Feed-Array: The ExaVolt Antenna

机译:具有膜固定馈源阵列的大孔径环形球囊嵌入式反射器的结构分析:ExaVolt天线

获取原文

摘要

The current state-of-the-art in ultra high energy (UHE) suborbital payloads -The Antarctic Impulsive Transient Antenna (ANITA) has saturated the available payload weight and envelope size for a Long Duration Balloon (LDB). The effective collection area for ANITA-2 is on the order of 1 square meter and the only way to improve sensitivity for ANITA-like missions is to increase the effective aperture size of the antenna. The largest available space on a balloon-borne system is the balloon itself, suggesting that a section of the balloon surface be used as a reflector. The confluence of the scientifically driven need to improve neutrino sensitivity for ANITA-like missions and the emergence of super-pressure balloon (SPB) technology leads to the next generation balloon-borne detector that we denote as The ExaVolt Antenna (EVA). EVA is an UHE particle observatory, currently under development for NASA's suborbital super-pressure program in Antarctica that aims to increase the effective collection area by a factor of 100. EVA's design is based on a novel application of toroidal reflector optics which utilizes a super-pressure balloon surface, along with a feed-array mounted on an inner membrane, to create an ultra-large radio antenna system with a synoptic view of the Antarctic ice sheet below it. The resulting balloon system is a large deployable structure that leads to some challenging analysis related to its design. In this paper, we will study aspects related to the stability and deployment of the EVA balloon/antenna system.
机译:当前超高能(UHE)轨道有效载荷的最新技术-南极脉冲瞬态天线(ANITA)已使长效气球(LDB)的有效载荷重量和包络尺寸达到饱和。 ANITA-2的有效收集面积约为1平方米,而提高类似ANITA任务的灵敏度的唯一方法是增加天线的有效孔径。气球承载系统上最大的可用空间是气球本身,建议将气球表面的一部分用作反射器。科学驱动的需求的融合提高了对类似ANITA任务的中微子的灵敏度,超压气球(SPB)技术的出现导致了下一代气球载探测器,我们将其称为ExaVolt天线(EVA)。 EVA是UHE粒子观测站,目前正在为NASA在南极的亚轨道超压计划开发,旨在将有效收集面积增加100倍。EVA的设计基于环形反射镜光学的新型应用,该应用利用了超环压力气球表面,以及安装在内膜上的馈电阵列,以创建超大型无线电天线系统,并具有其下方的南极冰盖的纵观视图。最终的气球系统是一个可展开的大型结构,导致对其设计进行一些具有挑战性的分析。在本文中,我们将研究与EVA气球/天线系统的稳定性和部署有关的方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号