首页> 外文会议>ASME international mechanical engineering congress and exposition >CONNECTING CHAIN CHEMISTRY AND NETWORK TOPOLOGY WITH THE LARGE DEFORMATION MECHANICAL RESPONSE OF ELASTOMERS
【24h】

CONNECTING CHAIN CHEMISTRY AND NETWORK TOPOLOGY WITH THE LARGE DEFORMATION MECHANICAL RESPONSE OF ELASTOMERS

机译:将链化学和网络拓扑与弹性体的大变形力学响应联系起来

获取原文

摘要

Elastomers are polymers able to undergo large, reversible deformations, and their mechanical properties depend on the chemistry of individual chains as well as the topology of the crosslinked network. In this work we analyze the connection between micro-scale network structure and the macroscopic mechanical properties by performing molecular dynamics (MD) simulations using the Kremer & Grest bead-spring model. The chain length and the density at which crosslinking is performed are varied in order to produce systems ranging from crosslink- dominated to highly entangled, and stress-stretch results are obtained via MD in the large deformation regime. In analogy with recent work on social, technological, and biological networks, we apply mathematical graph theory to describe elastomer networks in a multi-scale modeling framework. A matrix formulation of crosslinked polymers is presented and applied in order to identify the network structure resulting from both chemical crosslinks and physical crosslinks (entanglements). We show that spectral analysis of the crosslink and chain entanglement adjacency matrices along with the corresponding degree distributions can be used to identify and differentiate between the different materials. The spectrum of the crosslink adjacency matrix resembles a sparse regular graph, and spectrum of the in- termolecular chain entanglement matrix for the highly entangled systems is shown to resemble a random graph; however, deviations are noted which require further study. A comparison of the network properties with the stress-stretch response demonstrates the influence of both crosslinks and entanglements on the large deformation mechanical behavior of an elastomer material.
机译:弹性体是能够经历大的可逆变形的聚合物,其机械性能取决于单个链的化学性质以及交联网络的拓扑结构。在这项工作中,我们通过使用Kremer&Grest珠-弹簧模型执行分子动力学(MD)模拟,分析了微观网络结构与宏观机械性能之间的联系。改变链长和进行交联的密度以​​产生从交联支配到高度纠缠的体系,并且通过MD在大变形范围中获得应力-拉伸结果。与关于社会,技术和生物网络的最新工作类似,我们使用数学图论来描述多尺度建模框架中的弹性体网络。提出并应用了交联聚合物的基质配方,以鉴定由化学交联和物理交联(缠结)产生的网络结构。我们表明,交联和链缠结邻接矩阵的光谱分析以及相应的度数分布可用于识别和区分不同的材料。交联邻接矩阵的光谱类似于稀疏正则图,高度纠缠的系统的分子间链缠结矩阵的光谱类似于随机图。但是,注意到存在偏差,需要进一步研究。网络性质与应力-拉伸响应的比较表明,交联和缠结对弹性体材料的大变形机械行为的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号