首页> 外文会议>AIAA SPACE conference exposition >Optimizing a Modular Extensible Architecture for Low-Cost Human Exploration of the Moon, Near-Earth Objects, and Mars
【24h】

Optimizing a Modular Extensible Architecture for Low-Cost Human Exploration of the Moon, Near-Earth Objects, and Mars

机译:优化模块化可扩展架构,以低成本进行人类对月球,近地物体和火星的探索

获取原文

摘要

Past publications in this series have documented an ongoing study at the University of Maryland addressing the use of in-space module docking and logistics depots to create an architecture capable of affordable, near-term human return to the lunar surface. In the simplest application, a 6000 kg hypergolic propulsion module and a lightweight (~5000 kg) crew module and entry vehicle will provide human lunar access with six Delta Ⅳ Heavy launches to a low lunar orbit staging site. Probabilistic risk analysis has shown that the provision of prepositioned spares allow this modular architecture to meet or exceed the reliability of more traditional monolithic transport schemes, based on the use of existing evolved expendable launch vehicles (EELVs) without the near-term time and cost impacts of new launch vehicle development. More recently, the modular lunar architecture was examined for extension to human missions to near-Earth objects (NEOs) and to Mars orbit This analysis showed the feasibility of adapting the modular architecture to missions deeper in space, while upgrading launch vehicles from the current Delta Ⅳ Heavy to larger launch vehicles currently under development such as the Falcon Heavy. This paper revisits the issue of a modular transportation architecture for human exploration with emphasis on a program of continual investment in upgraded capabilities. Starting with a hard annual spending cap of $3B, this paper examines different development options starting with various architectures for an ongoing series of human lunar exploration missions. Analysis shows that creating feasible architectures within the announced payload masses for the Falcon Heavy requires a lightweight (4795 kg) crew return vehicle, capable of use as the crew descent and ascent spacecraft on the lunar surface and direct entry, descent, and landing upon return to Earth. A detailed subsystem breakdown with scaling data from Apollo indicates that such as spacecraft is feasible, with crew complement from 2-4 based on mission duration and the availability of supplemental habitable volumes. The same spacecraft is used as the entry and ascent capsule for crew at Mars, and for direct return to Earth at the end of a Mars exploration mission. Three lunar architectures are examined: geostationary transfer orbit insertion with logistics staging in low lunar orbit, low Earth orbit launch with low lunar orbit staging, and low Earth orbit launch and logistics staging before a single lunar transfer of the exploration mission hardware. The three architectures are also examined for adaptability to a wide range of one-way cargo delivery missions to the moon. The LEO/LEO architecture requires the fewest Falcon Heavy launches per human surface mission (4), but has the least ability to deliver cargo except in sizes approximating that of the complete human exploration spacecraft The LEO/LLO system has superior cargo capabilities and mission flexibility, but is the most expensive in terms of hardware development requirements. The GTO/LLO system has the lowest development costs, but required six launches per lunar exploration mission. The paper develops two architectures for transporting humans and exploration equipment between low Mars orbit and the surface, one based on storable propellants and one based on cryogenic (LOX/LH2) pro-pellants. Each of these architectures, forming the payload for a human Mars surface mission, are analyzed for delivery via Falcon Heavies with either storable or cryogenic Earth departure stages, and via launch on notional heavy-lift launch vehicles with LEO payloads of 70,100,130,160, and 200 MT. While the HLLV options require fewer launches and on-orbit staging operations, they are significantly more expensive, and would require standing down all other exploration missions for more than a decade while developing the launch vehicles and associated program elements. The final conclusion is to adopt a completely Falcon Heavy-based exploration architecture, with cryogenic propulsion propulsion for both orbital propulsion modules and Mars surface architectures to reduce the launch demands for a human Mars mission to ten flights.
机译:本系列的先前出版物已记录了马里兰大学正在进行的一项研究,该研究针对使用空间模块对接和物流仓库来创建能够负担得起的近期人类返回月球表面的架构。在最简单的应用中,一个6000千克的高抛射力推进模块和一个轻型(〜5000千克)乘员组模块以及进入飞行器将向人类提供登月通道,其中有6枚DeltaⅣ重载发射升空到低月球登台现场。概率风险分析表明,基于预置的备件的提供,这种模块化体系结构可以满足或超过更传统的整体式运输方案的可靠性,这是基于对现有演化的消耗性运载火箭(EELV)的使用,而不会在短期内对时间和成本造成影响运载火箭的研制。最近,对月球模块化结构进行了研究,以将人类任务扩展到近地天体(NEO)和火星轨道。该分析表明,将模块化体系结构适应太空更深的任务,同时从当前的三角洲升级运载火箭的可行性Ⅳ重型到目前正在开发的大型运载火箭,例如Falcon Heavy。本文回顾了用于人类探索的模块化运输体系结构的问题,重点是对升级能力进行持续投资的计划。从$ 3B的硬性年度支出上限开始,本文研究了一系列正在进行的人类月球探索任务的不同开发选项,其中包括各种体系结构。分析表明,要在Falcon Heavy的有效载荷质量之内创建可行的体系结构,就需要轻型(4795千克)机组人员返回飞行器,该运载工具能够在月球表面上用作机组人员下降和上升航天器,并可以直接进入,下降并在返回时着陆人间。用来自Apollo的缩放数据进行的详细子系统分解表明,诸如航天器是可行的,基于任务持续时间和补充可居住量的可用性,可对2-4名机组进行补充。相同的航天器被用作火星乘员的进入舱和上升舱,并在火星探测任务结束后直接返回地球。考察了三种月球结构:对地静止转移轨道的插入和低月球轨道的后勤分期;低月球轨道分期的低地球轨道发射;以及勘探任务硬件的一次月球转移前的低地轨道发射和后勤分阶段。还检查了这三种架构对各种单向月球货运任务的适应性。 LEO / LEO体系结构每次人类水面任务所需的Falcon Heavy发射次数最少(4),但运载货物的能力最差,除非其大小近似于完整的人类探索航天器的大小。LEO/ LLO系统具有卓越的运载能力和任务灵活性,但就硬件开发要求而言,这是最昂贵的。 GTO / LLO系统的开发成本最低,但每个月球探测任务需要发射六次。本文开发了两种在低火星轨道和地面之间运输人类和探测设备的体系结构,一种基于可存储推进剂,另一种基于低温(LOX / LH2)推进剂。这些结构构成了人类火星水面任务的有效载荷,可以通过具有可存储或低温地球离开阶段的Falcon Heavies进行分析,并通过具有70,100,130,160和200 MT LEO载荷的概念性重型运载火箭进行发射。尽管HLLV选件需要较少的发射和在轨登台操作,但它们的成本明显更高,并且在开发发射运载工具和相关程序要素时,将要求将所有其他勘探任务搁置十多年。最终结论是采用完全基于猎鹰重型的探索架构,同时为轨道推进模块和火星表面架构提供低温推进,以将人类火星飞行任务的发射需求减少至十次飞行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号