首页> 外文会议>IEEE Applied Imagery Pattern Recognition Workshop >A virtual filesystem approach to storage, analysis and delivery of volumetric image data for connectomics
【24h】

A virtual filesystem approach to storage, analysis and delivery of volumetric image data for connectomics

机译:用于Connectomics的存储,分析和传送体积图像数据的虚拟文件系统方法

获取原文

摘要

Biology and medicine are increasingly driven by analyses of 3D and time series imagery for studies that are not possible with 2D images. Structural data required for building spatially realistic cell and connectomics models are particularly demanding of both resolution and spatial extent. Image capture methods for optical and electron microscopy at gigapixel per second rates are now routine. In combination these factors can currently produce hundreds of terabytes per specimen at data densities up to 1 PB per cubic mm of tissue. New techniques are needed to economically handle these speeds and data scales and to distribute results for on-demand analyses by researchers and students nationwide. A virtual volume file system (VVFS) approach to these problems is suggested by trends in the economics of computation and data storage along with typical data access patterns. In recent years improvements in the speed and cost of computation have dramatically outpaced gains in storage cost and performance. This is particularly true in GPGPU computation where data bandwidth is often the limiting factor for overall throughput. The essence of this VVFS mechanism is to apply on-the-fly computation to replace redundant data storage in critical operations such as registration, rendering and automated recognition. This is accomplished using the Linux Filesystem in UserSpace (FUSE) mechanism to provide file compatible interfaces to programs that operate from data files. This interface produces the appropriate content on-demand as applications such as TensorFlow or other analysis systems access the virtual files. The VVFS provides a flexible framework for connecting multiple program units into large scale applications while also reducing redundant data storage. By moving computation directly into the access path it minimizes data traffic while processing only those parts of the virtual data which end user applications consume.
机译:通过3D和时间序列图像越来越多地驱动生物学和药物,用于使用2D图像不可能的研究。建立空间现实细胞和Connectomics模型所需的结构数据尤其需要分辨率和空间程度。目前常规的千兆像素下Gigapixel的光学和电子显微镜的图像捕获方法现在是常规的。组合,这些因素目前可以在每立方MM组织的数据密度下每样本产生数百特征。需要在经济地处理这些速度和数据尺度的新技术,并通过全国的研究人员和学生分配按需分析的结果。通过计算和数据存储经济学的趋势以及典型的数据访问模式,提出了虚拟卷文件系统(VVFS)方法。近年来,计算的速度和成本的改进显着超出了储存成本和性能的收益。在GPGPU计算中尤其如此,其中数据带宽通常是整个吞吐量的限制因素。此VVFS机制的本质是应用于飞行的计算,以替换在注册,渲染和自动识别之类的关键操作中替换冗余数据存储。这是使用Userspace中的Linux文件系统(Fuse)机制完成的,为从数据文件中运行的程序提供文件兼容接口。此界面可在诸如TensorFlow或其他分析系统等应用程序等应用程序访问虚拟文件中的适当内容。 VVFS提供了一个灵活的框架,用于将多个程序单元连接到大规模应用程序,同时还原冗余数据存储。通过将计算直接移动到访问路径中,它最大限度地减少数据流量,同时仅处理最终用户应用程序的虚拟数据的那些部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号