首页> 外文会议>Neural Networks (IJCNN), The 2012 International Joint Conference on >Self-reorganizing TSK fuzzy inference system with BCM theory of meta-plasticity
【24h】

Self-reorganizing TSK fuzzy inference system with BCM theory of meta-plasticity

机译:基于亚塑性理论的BCM自重组TSK模糊推理系统

获取原文

摘要

The usage of online learning technique in neuro-fuzzy system (NFS) to address system variance is more prevalent in recent times. Since a lot of external factors have an effect on time-variant datasets, these datasets tend to experience changes in their pattern. While small changes (“drifts”) can be handled by the traditional self-organizing techniques, major changes (“shifts”) are not handled. Thus, there is a growing need for these systems to be able to self-reorganize their structures to adapt to major changes in data patterns. Hebb''s theory for learning in NFSs, proposed that synaptic strengths could be determined by a simple linear relation of the pre- and post-synaptic signals. However this theory resulted in a unidirectional growth of synaptic strengths and destabilized the model. The Bienenstock-Cooper-Munro (BCM) theory of learning resolves these problems by incorporating synaptic potentiation (association or Hebbian) and depression (dissociation or anti-Hebbian), which is useful for time-variant data computations. There are two popular methods for fuzzy rule representation, namely: Mamdani and Takagi-Sugeno-Kang (TSK) model. Mamdani model focuses on interpretability and compensates on accuracy. Rules are created by associating an input fuzzy region to an output fuzzy region. However, the TSK model associates an input fuzzy region to a linear function/plane making it more accurate than the Mamdani model. Current TSK models like SAFIS, eTS, and DENFIS attempt to strike a balance between the accuracy and interpretability of the model. However, most of the models utilize offline learning algorithms and require multiple passes of the data samples. Furthermore, the models that use online learning mainly employ Hebb''s theory of incremental learning. This paper proposes a neuro-fuzzy architecture that uses the BCM theory of online learning with extensive self-reorganizing capabilities. It also uses a first-order TSK model for know- edge representation, which allows for an accurate output calculation.
机译:近年来,在神经模糊系统(NFS)中使用在线学习技术来解决系统差异越来越普遍。由于许多外部因素会对时变数据集产生影响,因此这些数据集倾向于经历其模式的变化。尽管传统的自组织技术可以处理较小的更改(“漂移”),但不处理较大的更改(“转换”)。因此,对这些系统越来越需要能够自我重组其结构以适应数据模式的重大变化。 Hebb在NFS中学习的理论提出,突触强度可以通过突触前和突触后信号的简单线性关系来确定。但是,该理论导致突触强度的单向增长,并破坏了模型的稳定性。 Bienenstock-Cooper-Munro(BCM)的学习理论通过结合突触增强(联想或希伯来语)和抑郁(解离或反希伯来语)解决了这些问题,这对于时变数据计算很有用。有两种流行的模糊规则表示方法:Mamdani模型和Takagi-Sugeno-Kang(TSK)模型。 Mamdani模型专注于可解释性并在准确性上进行补偿。通过将输入模糊区域与输出模糊区域相关联来创建规则。但是,TSK模型将输入模糊区域与线性函数/平面关联,从而使其比Mamdani模型更准确。当前的TSK模型(例如SAFIS,eTS和DENFIS)试图在模型的准确性和可解释性之间取得平衡。但是,大多数模型都使用离线学习算法,并且需要多次传递数据样本。此外,使用在线学习的模型主要采用赫布的增量学习理论。本文提出了一种神经模糊的体系结构,该体系结构使用BCM在线学习理论并具有广泛的自我重组能力。它还使用一阶TSK模型进行知识表示,从而可以进行精确的输出计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号