首页> 外文会议>ASME international mechanical engineering congress and exposition;IMECE2011 >EFFECTS OF HIGH INITIAL ENGINE START UP SPEEDS IN ISOTHERMAL FLUID FLOW AND PISTON SKIRTS EHL
【24h】

EFFECTS OF HIGH INITIAL ENGINE START UP SPEEDS IN ISOTHERMAL FLUID FLOW AND PISTON SKIRTS EHL

机译:高初始发动机启动速度对等温流体流动和活塞裙EHL的影响

获取原文

摘要

In the medium and high speed normal engine operating conditions a fully established elastohydrodynamic lubricating (EHL) film between the piston skirts and cylinder liner surfaces reduces friction and prevents adhesive wear. In the initial engine start up the absence of EHL film causes wear of piston skirts, especially at high speeds. In a few initial cold engine start up cycles, a highly efficient cooling system may not let the temperature to rise significantly and affect the viscosity and other characteristics of a lubricant. In view of the vulnerability of piston skirts to adhesive wear at high initial engine start up speeds, the hydrodynamic and EHL of piston skirts is modeled numerically. A 2-D Reynolds equation is solved by coupling the secondary piston motion and using a finite difference scheme. Transient hydrodynamic film thickness profiles are generated at a relatively high engine start up speed. In the EHL regime, the profiles of rising hydrodynamic pressures and film thicknesses are predicted by using the inverse solution technique in fully flooded conditions. The study is extended to a range of high engine start up speeds while using a fairly viscous engine lubricant. Numerical simulations show significant changes in the piston eccentricities and film thickness profiles in the hydrodynamic and EHL regimes at different start up speeds. Such variations alter the hydrodynamic and EHL pressures and visibly affect the load carrying capacity of the lubricant. This study suggests to optimize the high engine start up speed for the given viscosity grade engine lubricant when considering the vulnerability of skirts and liner surfaces to adhesive wear in the initial engine start up.
机译:在中速和高速正常发动机工况下,在活塞裙和气缸套表面之间形成的完全弹性的流体动力润滑(EHL)膜可减少摩擦并防止粘合剂磨损。在最初的发动机启动过程中,缺少EHL膜会导致活塞裙部磨损,特别是在高速行驶时。在一些最初的冷发动机启动循环中,高效的冷却系统可能不会让温度显着升高并不会影响润滑剂的粘度和其他特性。考虑到在高初始发动机启动速度下活塞裙容易受到胶粘剂磨损的影响,对活塞裙的流体动力学和EHL进行了数值建模。通过耦合次级活塞运动并使用有限差分方案来求解二维雷诺方程。瞬态流体动力膜厚度分布是在较高的发动机启动速度下生成的。在EHL模式中,通过在完全淹没条件下使用逆解技术来预测流体压力和膜厚升高的曲线。该研究扩展到了使用高粘度发动机润滑剂时的高发动机启动速度的范围。数值模拟表明,在不同的启动速度下,在流体动力学和EHL工况下,活塞的偏心距和膜厚分布发生了显着变化。这种变化会改变流体动力压力和EHL压力,并明显影响润滑剂的承载能力。这项研究建议,在考虑裙边和衬套表面在发动机初次启动时易受粘合剂磨损的影响时,针对给定粘度等级的发动机润滑剂,优化高发动机启动速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号