首页> 外文会议>ASME/JSME/KSME Joint Fluids Engineering Conference;AJK2011 >NUMERICAL INVESTIGATIONS OF THERMAL EFFECTS ON THE INTERACTION OF SHOCK WAVES WITH BUBBLES
【24h】

NUMERICAL INVESTIGATIONS OF THERMAL EFFECTS ON THE INTERACTION OF SHOCK WAVES WITH BUBBLES

机译:冲击波与气泡相互作用的热效应数值研究

获取原文

摘要

The present study deals with the collapse of nonspherical bubbles in a compressible liquid by taking the thermal diffusion into account. The ghost fluid method (GFM) is modified so as to consider the thermal diffusion through the bubble surface. The boundary condition for the temperature continuity at the interface is discussed for determining the values of the ghost fluids. The improved GFM is applied to the collapse of a single spherical bubble. The present results are in good agreement with those obtained from the equation of motion for a single bubble (Keller equation) coupling with the energy equation. The improved multigrid GFM is also applied to the interaction of a gas bubble with a strong shock wave. The non-spherical bubble collapse is simulated successfully by taking the thermal diffusion into account. The thermal boundary layers both inside and outside the bubble are captured with the present method although the thermal boundary layer in liquid is very thin. The bubble collapse due to the incident shock wave accompanies the formation of the liquid jets and shock waves leading to the high temperature field. The influence of thermal diffusion becomes more prominent when the initial bubble radius is small. It is shown that a large amount of heat outflows from the interior of the bubble to the liquid when the liquid jet hits the downstream surface of the bubble and the bubble rebounds. The increased thermal diffusion causes the decrease of the internal pressure and temperature in the bubble leading to more violent collapse.
机译:本研究通过考虑热扩散来处理可压缩液体中非球形气泡的破裂。修改了幻影流体方法(GFM),以考虑通过气泡表面的热扩散。讨论了界面处温度连续性的边界条件,用于确定幻影流体的值。改进的GFM适用于单个球形气泡的破裂。目前的结果与从单个气泡的运动方程式(凯勒方程式)与能量方程式获得的结果非常吻合。改进的多网格GFM还适用于气泡与强冲击波的相互作用。考虑到热扩散,成功地模拟了非球形气泡的破裂。尽管液体中的热边界层非常薄,但通过本方法可以捕获气泡内部和外部的热边界层。由于入射冲击波引起的气泡破裂伴随着液体射流和冲击波的形成而导致高温场。当初始气泡半径小时,热扩散的影响变得更加突出。示出了当液体射流撞击气泡的下游表面并且气泡回弹时,大量的热量从气泡的内部流出到液体。增加的热扩散导致气泡中的内部压力和温度降低,从而导致更剧烈的破裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号