首页> 外文会议>ASME/JSME/KSME Joint Fluids Engineering Conference;AJK2011 >EXPERIMENTAL AND NUMERICAL ANALYSIS OF PRESSURE PULSATIONS AND MECHANICAL DEFORMATIONS IN A CENTRIFUGAL PUMP IMPELLER
【24h】

EXPERIMENTAL AND NUMERICAL ANALYSIS OF PRESSURE PULSATIONS AND MECHANICAL DEFORMATIONS IN A CENTRIFUGAL PUMP IMPELLER

机译:离心泵叶轮压力脉动和机械变形的实验和数值分析

获取原文

摘要

Deformations, mechanical stresses and vibrations in centrifugal pumps are the result of pressure fluctuations, which are acting as excitation forces. When a pump operates at its optimum, the pressure pulsations are at minimum, but for a pump operating in part-load, pressure pulsations increase and subsequent vibration and deformation levels increase. In a recent experimental research, the pressure pulsations and the resulting structural stresses in the last stage impeller of a multistage pump have experimentally investigated for different operating conditions [1]. The experimental investigations have been complemented by transient numerical simulations using a commercial CFD code and structural analysis using the pressure pulsations resulting from the CFD code as boundary conditions. In the present study, a validation of these CFD and FEM simulations is presented. The analysis has been performed in three steps. In the first step, the transient CFD results for different load cases are analyzed and compared with the experimental results in order to evaluate the CFD simulations. In the second step the time domain pressure pulsation data are post-treated and decomposed into a series of rotating pressure waves. These pressure waves are then applied as boundary conditions to an FEM model and one full impeller revolution is simulated as steady calculations for 72 angular positions. The pressure pulsations in the best efficiency point are regularly distributed in space and time and dominated by rotor-stator-interaction. For part-load operation, the pressure distribution becomes more and more unsteady. The CFD results for part load exhibit stationary stall in the diffuser for a flow rate relative to best efficiency point of q*=0.9 and unsteady stall behavior for a q*=0.8. While the numerical CFD results agree well with experimental data for q* = 1 and q* = 0.9, at lower part load (q* = 0.8) the CFD didn't reproduce the experimentally observed flow behavior, especially the rotating stall. The FEM results at design conditions show relatively low tangential stresses at the impeller outlet, which agree well with the measured deformations and stresses.
机译:离心泵的变形,机械应力和振动是压力波动的结果,压力波动是激励力。当泵以最佳状态运行时,压力脉动最小,但对于在部分负载下运行的泵,压力脉动会增加,随后的振动和变形程度也会增加。在最近的一项实验研究中,针对不同的运行条件,对多级泵的末级叶轮中的压力脉动和所产生的结构应力进行了实验研究[1]。实验研究通过使用商用CFD代码的瞬态数值模拟和使用CFD代码产生的压力脉动作为边界条件的结构分析得到了补充。在当前的研究中,这些CFD和FEM仿真的验证被提出。分析分三个步骤进行。第一步,分析不同载荷工况下的瞬态CFD结果,并将其与实验结果进行比较,以评估CFD仿真。在第二步中,对时域压力脉动数据进行后处理,并将其分解为一系列旋转压力波。然后将这些压力波作为边界条件应用于FEM模型,并模拟一个完整的叶轮公转作为72个角位置的稳定计算。最佳效率点上的压力脉动在空间和时间上规则分布,并以转子-定子相互作用为主导。对于部分负荷运行,压力分布变得越来越不稳定。对于部分负载的CFD结果显示,相对于最佳效率点q * = 0.9的流量,扩散器中的静止失速和q * = 0.8时的不稳定失速行为。尽管数值CFD结果与q * = 1和q * = 0.9的实验数据非常吻合,但在较低的部分载荷(q * = 0.8)下,CFD并未重现实验观察到的流动行为,尤其是旋转失速。在设计条件下的有限元分析结果表明,叶轮出口处的切向应力相对较低,这与测得的变形和应力非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号