【24h】

PWSCC CRACK GROWTH MODELING APPROACHES

机译:PWSCC裂纹增长建模方法

获取原文

摘要

Flaw indications have been found in some dissimilar metal (DM) nozzle to stainless steel piping welds and reactor pressure vessel heads (RPVH) in pressurized water reactors (PWR) throughout the world. The nozzle welds usually involve welding ferritic (often A508) nozzles to 304/316 stainless steel pipe) using Alloy 182/82 weld metal. The welds may become susceptible to a form of corrosion cracking referred to as primary water stress corrosion cracking (PWSCC). It can occur if the temperature is high enough (usually >300C) and the water chemistry in the PWR is typical of operating plants. The weld residual stresses (WRS) induced by the welds are a main driver of PWSCC. Several mechanical mitigation methods to control PWSCC have been developed for use on a nozzle welds in nuclear PWR plants. These methods consist of applying a weld overlay repair (WOR), using a method called mechanical stress improvement process (MSIP), and applying an inlay to the nozzle ID. The purpose of a mitigation method is to reduce the probability that PWSCC will occur in the nozzle joint. The key to assessing the effectiveness of mitigation is to determine the crack growth time to leak with and without the mitigation. Indeed, for WOR and MSIP, the weld residual stresses are often reduced after application while for inlay they are actually increased. However, all approaches reduce crack growth rates if applied properly. Procedures for modeling PWSCC growth tend to vary between organizations performing the analyses. Currently, the prediction of PWSCC crack growth is based on the stress intensity factors at the crack tips. Several methods for evaluating the stress intensity factor for modeling the crack growth through these WRS fields are possible, including using analytical, natural crack growth using finite element methods, and using the finite element alternating method. This paper will summarize the methods used, critique the procedures, and provide some examples for crack growth with and without mitigation. Suggestions for modeling such growth will be provided.
机译:在世界各地的压水反应堆(PWR)中,与不锈钢管道焊缝和反应堆压力容器头(RPVH)的某些异种金属(DM)喷嘴中都发现了缺陷迹象。喷嘴焊缝通常包括使用182/82合金焊接金属将铁素体(通常为A508)喷嘴焊接到304/316不锈钢管上。焊缝可能会受到称为初级水应力腐蚀裂纹(PWSCC)的腐蚀裂纹形式的影响。如果温度足够高(通常> 300C)并且PWR中的水化学性质是运行工厂的典型现象,则可能发生这种情况。焊缝引起的焊缝残余应力(WRS)是PWSCC的主要驱动力。已经开发出几种控制PWSCC的机械缓解方法,用于核PWR工厂的喷嘴焊缝。这些方法包括使用称为机械应力改善过程(MSIP)的方法进行焊缝修复(WOR),以及对喷嘴ID进行镶嵌。缓解方法的目的是减少喷嘴接头中发生PWSCC的可能性。评估缓解效果的关键是确定在有和没有缓解的情况下裂纹扩展的时间。实际上,对于WOR和MSIP,焊接残余应力通常在施加后会降低,而对于嵌体,残余应力实际上会增加。但是,如果正确应用,所有方法都会降低裂纹扩展率。在进行分析的组织之间,对PWSCC增长进行建模的过程往往会有所不同。目前,PWSCC裂纹扩展的预测是基于裂纹尖端的应力强度因子。评估应力强度因子以模拟通过这些WRS场的裂纹扩展的几种方法是可行的,包括使用有限元方法进行分析,自然裂纹扩展以及使用有限元交替方法。本文将总结所使用的方法,对过程进行批判,并提供一些在有或没有缓解的情况下裂纹扩展的实例。将提供对这种增长进行建模的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号