首页> 外文会议>ASME turbo expo >DRY-FRICTION WHIP AND WHIRL PREDICTIONS FOR A ROTOR-STATOR MODEL WITH RUBBING CONTACT AT TWO LOCATIONS
【24h】

DRY-FRICTION WHIP AND WHIRL PREDICTIONS FOR A ROTOR-STATOR MODEL WITH RUBBING CONTACT AT TWO LOCATIONS

机译:两个位置具有摩擦接触的转子-定子模型的干摩擦WHIP和WHIRL预测

获取原文

摘要

The present work investigates the phenomena of whip and whirl for a rigid rotor contacting at two bearing locations. The idea originated with a paper by Clark et al. in 2009 on an anemometer undergoing dry friction whip and whirl. The anemometer rotor was supported by two Teflon® bushings within an elastically supported housing. The dry-friction forces arose at the bushings. Prior models for dry friction whirl and whip have considered rub at one non-support location. The present analytical model consists of a rigid rotor connected to a rigid stator at two rubbing contact locations. Analytical solutions are developed for the following normal reaction forces at the contact locations: (1) In phase, and (2) 180 degrees out of phase. Analytical solutions are only possible for the same RCl (Radius to Clearance ratio) at the two rub locations and define regions where dry-friction whirl is possible plus indication possible boundaries between whirl and whip. These solutions are similar to Black's in 1968. A flexible-rotor/flexible-stator model with nonlinear connections at the bearings was developed to more correctly establish the range of possible solutions. The nonlinear connections at the rub surface are modeled using Hunt and Crossley's 1975 contact model with coulomb friction. Dry friction simulations are performed for the following rotor center of gravity (C.G.) configurations: (1) Centered, (2) 3/4 contact-span location and (3) Overhang location outside the contacts. Results from the in-phase analytical solutions and the nonlinear simulations agree to some extent with the rotor mass centered and at 3/4 location in that whirl-to-whip transitions occur near the pinned rotor-stator bounce frequency. For the overhung mass case, the nonlinear simulation predicts whip at different frequencies for the two contact locations. Neither analytical solution modes predicts this outcome. No out-of-phase solutions could be obtained via time-transient simulations. Dry-friction whirling is normally characterized as supersynchronous precession with a precession frequency equal to running speed times RCl. Simulation predictions for models with different RCl mimic whirling. Simulation predictions show increasing backward precessional (BP) frequency with increasing rotor speeds. However, individual contact velocities show slipping at all conditions. Slipping is greater at one location than the other, netting a "whirl-like" motion. For the overhung model with different RCl ratios, apart from whipping at different frequency the two contacts also whirl at different frequencies corresponding to the RCl at the respective contacts. Simulations predict a different running speed for the "jump up" in precession frequency associated with a transition from whirl-to-whip with increasing running speed than for the jump-down in precession frequency for whirl-to-whip in a speed-decreasing mode
机译:本工作研究了在两个轴承位置接触的刚性转子的甩动和甩动现象。这个想法起源于Clark等人的论文。在2009年的风速计上经历了干摩擦鞭和旋转。风速计的转子由两个Teflon®衬套支撑在一个弹性支撑的外壳内。衬套处产生干摩擦力。先前的干摩擦涡动和鞭打模型已经考虑了在一个非支撑位置的摩擦。本分析模型由在两个摩擦接触位置处连接到刚性定子的刚性转子组成。针对接触位置处的以下法向反作用力开发了解析解决方案:(1)同相,(2)异相180度。仅在两个摩擦位置具有相同的RCI(半径与间隙比)的分析解决方案是可能的,并且定义了可能发生干摩擦涡动的区域,并指出了在涡动和鞭子之间可能存在的边界。这些解决方案与Black在1968年的解决方案相似。开发了在轴承处具有非线性连接的挠性转子/挠性定子模型,以更正确地确定可能的解决方案范围。摩擦表面的非线性连接是使用Hunt和Crossley的1975年库仑摩擦接触模型建模的。对以下转子重心(C.G.)配置执行干摩擦模拟:(1)居中,(2)3/4触点跨度位置和(3)触点外悬位置。同相分析解决方案和非线性模拟的结果在一定程度上与转子质量居中且在3/4位置相符,因为在固定转子-定子弹跳频率附近发生了旋涡到跃变的转变。对于悬垂的情况,非线性仿真预测两个接触位置在不同频率下的鞭状物。两种分析解决方案模式都无法预测这一结果。通过时间瞬态仿真无法获得任何异相解决方案。干摩擦旋转通常被表征为超同步进动,进动频率等于运行速度乘以RC1。具有不同RCI模拟旋转的模型的仿真预测。仿真预测表明,随着转子速度的增加,后向进动(BP)频率也会增加。但是,各个接触速度在所有情况下都显示出滑移。一个位置的滑移大于另一个位置的滑移,从而得到“旋转状”运动。对于具有不同RCI比率的悬空模型,除了以不同的频率进行鞭打外,两个触点还以与相应触点处的RCI相对应的不同频率进行陀螺。仿真预测,随着转速的增加,旋进频率从“跳动”到“跳动”的跃迁中“跳升”的运行速度与减速模式下的旋涡“跳动”中的进动频率的跳变有不同的运行速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号