首页> 外文会议>DSCC2011;ASME dynamic systems and control conference;Bath/ASME symposium on fluid power and motion control >OPTIMAL ENERGY MANAGEMENT FOR A HYBRID VEHICLE USING NEURO-DYNAMIC PROGRAMMING TO CONSIDER TRANSIENT ENGINE OPERATION
【24h】

OPTIMAL ENERGY MANAGEMENT FOR A HYBRID VEHICLE USING NEURO-DYNAMIC PROGRAMMING TO CONSIDER TRANSIENT ENGINE OPERATION

机译:考虑瞬态发动机运行的神经动力规划的混合动力汽车优化能源管理

获取原文

摘要

This paper proposes a self-learning approach to develop optimal power management with multiple objectives, e.g. to minimize fuel consumption and transient engine-out NOx and paniculate matter emission for a series hydraulic hybrid vehicle. Addressing multiple objectives is particularly relevant in the case of a diesel powered hydraulic hybrid since it has been shown that managing engine transients can significantly reduce real-world emissions. The problem is formulated as an infinite time horizon stochastic sequential decision making/markovian problem. The problem is computationally intractable by conventional Dynamic programming due to large number of states and complex modeling issues. Therefore, the paper proposes an online self-learning neural controller based on the fundamental principles of Neuro-Dynamic Programming (NDP) and reinforcement learning. The controller learns from its interactions with the environment and improves its performance over time. The controller tries to minimize multiple objectives and continues to evolve until a global solution is achieved. The control law is a stationary full state feedback based on 5 states and can be directly implemented. The controller performance is then evaluated in the Engine-in-the-Loop (EIL) facility.
机译:本文提出了一种自学习方法来开发具有多个目标的最佳电源管理,例如以便最大程度地减少串联液压混合动力汽车的燃油消耗和瞬态发动机排出的NOx以及颗粒物的排放。在柴油动力液压混合动力车的情况下,解决多个目标特别重要,因为已证明管理发动机瞬变可显着减少实际排放。该问题被表述为无限时间范围随机顺序决策/马尔可夫问题。由于存在大量状态和复杂的建模问题,传统的动态编程在计算上难以解决这个问题。因此,本文提出了一种基于神经动态规划(NDP)和强化学习的基本原理的在线自学习神经控制器。控制器会从与环境的交互中学习并随着时间的推移提高其性能。控制器试图使多个目标最小化,并不断发展直至实现全局解决方案。控制定律是基于5个状态的稳态全状态反馈,可以直接实现。然后,在环引擎(EIL)中评估控制器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号