【24h】

ZINC INJECTION IMPLEMENTATION PROCESS AT EDF: RISK ANALYSIS, CHEMICAL SPECIFICATIONS AND OPERATING PROCEDURES

机译:EDF的锌注射实施流程:风险分析,化学规格和操作程序

获取原文

摘要

Zinc's ability to replace cobalt from oxides of primary circuit surfaces has provided the first motivation for implementing the zinc addition in BWRs since the mid-1980s. The beneficial results regarding dose reductions have been demonstrated; therefore, this practice has been extended to PWRs since the 1990s, not only for radiation fields' considerations, but also for reducing PWSCC. From the beginning of the 2000s, further reasons to inject zinc associated with the fuel management process have been identified (e; g; power increase, high burn-up, and/or cycle length increase). These evolutions must be accompanied by an adapted chemistry program in order to mitigate the crud deposition on fuel assemblies and the consequent AOA/CIPS or localized clad corrosion risks. The source term reduction (due to the decrease of the general corrosion rate of several materials) and the absence of negative impact on alloy cladding in the presence of zinc in the primary coolant are the main reasons for selecting zinc injection as a reliable option for preventing and/or mitigating the effects of fuel deposits.These three PWR motivations (field radiation, components performance, and fuel reliability) are also the major objectives of CANDU®1, WWER, and new reactors (EPR, AP1000), where the zinc injection feasibility analyses are in progress in order to improve the safety of their operating conditions.With the purpose of achieving the optimal results of zinc injection, the process's implantation in a unit must be conducted with an appropriate risk analysis, covering all possible domains affected by this primary coolant chemistry modification : safety, fuel and component performance, radioprotection, waste, environment, human and installation security, human and material resources, staff formation, and documentation.EDF has performed a complete analysis of this enlarged scope, relying upon theoretical and experimental results as well as NPP feedback. This paper describes EDF's strategy and the different measures adopted by EDF to provide the necessary tools to the French units : zinc injection procedures, risk analysis, chemistry -radiochemistry surveillance programs, and chemical specifications. This work can be useful for other utilities, assisting them in optimizing and/or implementing the zinc injection in the most suitable conditions, which would help to obtain the expected results in the current and the future reactors.
机译:自1980年代中期以来,锌从一次电路表面的氧化物中替代钴的能力为在BWR中实施锌添加提供了第一个动机。关于减少剂量的有益结果已得到证明;因此,自1990年代以来,这种做法已扩展到PWR,不仅出于辐射场的考虑,而且还出于减少PWSCC的考虑。从2000年代初开始,已经确定了注入更多与燃料管理过程相关的锌的原因(例如,功率增加,燃尽率高和/或循环长度增加)。这些演变必须伴随有适应性的化学程序,以减轻在燃料组件上的沉淀物沉积以及随之而来的AOA / CIPS或局部包层腐蚀风险。源术语的减少(由于几种材料的总腐蚀速率降低)以及在主冷却剂中存在锌的情况下对合金熔覆层没有负面影响是选择锌注入作为防止腐蚀的可靠选择的主要原因这三个PWR动机(场辐射,组件性能和燃料可靠性)也是CANDU®1,WWER和新型反应堆(EPR,AP1000)的主要目标,其中注入锌为了提高操作条件的安全性,正在进行可行性分析。为了获得最佳的锌注射结果,必须在工艺中对单元中的锌进行适当的风险分析,涵盖所有可能受此影响的领域。主要冷却剂化学改性:安全性,燃料和部件性能,辐射防护,废物,环境,人员和安装安全,人员和物料EDF已根据理论和实验结果以及NPP反馈对这一扩大范围进行了全面分析。本文介绍了EDF的策略以及EDF为向法国单位提供必要工具所采取的不同措施:锌注入程序,风险分析,化学放射化学监测计划和化学规格。这项工作对其他公用事业可能是有用的,它可以帮助他们在最合适的条件下优化和/或实施锌注入,这将有助于在当前和未来的反应堆中获得预期的结果。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号