首页> 外文会议>Geothermal 2011;Geothermal Resources Council annual meeting >BayesLoc: A Robust Location Program for Multiple Seismic Events Given an Imperfect Earth Model and Error-Corrupted Seismic Data
【24h】

BayesLoc: A Robust Location Program for Multiple Seismic Events Given an Imperfect Earth Model and Error-Corrupted Seismic Data

机译:BayesLoc:考虑到不完善的地球模型和错误损坏的地震数据的多重地震事件的稳健定位程序

获取原文
获取外文期刊封面目录资料

摘要

Accurate hypocentral locations of micro-earthquakes are essential for enhanced geothermal systems characterization and represent a first step for subsequent seismic analysis. Here we present an innovative location algorithm and software that provides robust locations and (Bayesian) estimates of the location error. Robustness to data error is highly useful for automated detection and location systems. Improved error estimates allow operators to reliably image fracture geometry with a precise understanding of the true spatial resolution (i.e. determine whether a "cloud" of seismicity truly represents a diffuse fracture network or is simply an artifact of location error). The probabilistic error estimates also provide a solid basis for risk assessments based on inferred fracture geometry. The problem of locating seismic activity (3-dimensional position and time, i.e. the hypocenter) has a long history in the seismic community. The location problem itself can be stated as a relatively simple inversion: find the hypocenter that minimizes the difference between the observed and predicted arrival times of seismic phases at a network of seismic instruments. Complicating factors include: (1) the predicted arrival-times are imperfect, due to an imperfect earth model, (2) the observed arrival-times are subject to measurement error, and (3) the data set of arrival times can be corrupted by phase labeling and instrument timing errors. The fact that geographic network coverage is commonly not ideal compounds the effect of data errors, leading to inaccurate locations. Most troubling, estimates of location uncertainty are commonly not representative of true location error, because most location methods only account for Gaussian measurement errors. Existing location methods fall broadly into two categories: those that locate one event at a time (single-event methods) and those that locate multiple events simultaneously (multiple-event methods). Multiple-event locators are superior to the single-event locators, as they can leverage the information available in the whole data set to mitigate and/or account for the impact of data and model errors. Nonetheless, existing multiple-event location results are notoriously subject to systematic biases due to an imperfect travel-time model, and multiple-event methods can be very sensitive to data set corruption. LLNL-CONF-483197. We have developed BayesLoc: a robust multiple-event locator that improves on existing multiple-event locators, both in terms of robustness and accuracy. The locator is probabilistic (Bayesian) and simultaneously provides a probabilistic characterization of the unknown origin parameters, corrections to the assumed travel-time model, the precision of the observed arrival-time data, and accuracy of the assigned phase labels (including identifying outliers). Inference on the joint posterior probability distribution of all the parameters that define the multiple-event location problem is carried out using a Markov Chain Monte Carlo (MCMC) sampler. The end result is not just a single estimate of the location of each event, but a sample (a collection of posterior realizations) of locations that are consistent with the observed arrival-time data, to the degree of fidelity required by the precision of the data and the correctness of the travel-time model. This provides consistent location estimates with representative "error bars" (e.g., 90% probability regions), along with information about the correctness of the assumed travel-time model and the accuracy of the arrival-time data. Bayesloc has been successfully used to accurately locate event datasets containing tens to thousands of events, from small clusters to globally distributed events. In both cases location accuracy and uncertainty estimates have been validated using ground-truth events. In this paper we present the probabilistic approach at the core of Bayesloc, how sampling-based posterior inference is carried out given observed arrival-time data, case studies at regional and global scales, and discuss application of Bayesloc at local distances and settings typical of geothermal reservoirs.
机译:微型地震的准确震中位置对于增强地热系统的表征至关重要,是后续地震分析的第一步。在这里,我们介绍一种创新的定位算法和软件,该算法和软件可提供可靠的位置和位置误差的(贝叶斯)估计值。数据错误的鲁棒性对于自动检测和定位系统非常有用。改进的误差估计值使操作人员能够在准确了解真实空间分辨率的情况下可靠地成像裂缝几何形状(即确定地震活动的“云”是否真正代表了弥散性裂缝网络或仅仅是位置误差的产物)。概率误差估计也为基于推断的裂缝几何形状的风险评估提供了坚实的基础。定位地震活动(3维位置和时间,即震源)的问题在地震界有着悠久的历史。位置问题本身可以说成是一个相对简单的反演:找到震源,该震源可以使在地震仪器网络中观测到的和预测的地震相到达时间之间的差异最小。复杂的因素包括:(1)由于地球模型不完善,预计到达时间不完善;(2)观测到的到达时间易受测量误差的影响;(3)到达时间的数据集可能会因以下原因而受到破坏:相位标签和仪器计时错误。地理网络覆盖范围通常不是理想的事实加剧了数据错误的影响,从而导致位置不准确。最令人烦恼的是,位置不确定性的估计通常不能代表真实的位置误差,因为大多数定位方法仅考虑了高斯测量误差。现有的定位方法大致分为两类:一次定位一个事件的方法(单事件方法)和同时定位多个事件的方法(多事件方法)。多事件定位符优于单事件定位符,因为它们可以利用整个数据集中的可用信息来减轻和/或解决数据和模型错误的影响。但是,由于旅行时间模型的不完善,现有的多事件定位结果众所周知会受到系统性偏差的影响,并且多事件方法对数据集损坏非常敏感。 LLNL-CONF-483197。我们已经开发了BayesLoc:一种健壮的多事件定位器,在健壮性和准确性方面都对现有的多事件定位器进行了改进。定位器是概率(贝叶斯)的,同时提供未知原点参数的概率表征,对假定的行进时间模型的校正,观测到的到达时间数据的精度以及分配的相位标签的精度(包括识别异常值) 。使用马尔可夫链蒙特卡洛(MCMC)采样器对定义多事件定位问题的所有参数的联合后验概率分布进行推断。最终结果不仅是对每个事件的位置的单个估计,而且是与观测到的到达时间数据一致的位置样本(后验实现的集合),达到了事件精确度所需的保真度。数据和旅行时间模型的正确性。这提供了具有代表性的“误差线”(例如,90%的概率区域)以及关于假定的旅行时间模型的正确性和到达时间数据的准确性的信息的一致的位置估计。 Bayesloc已成功用于精确定位包含数十到数千个事件的事件数据集,从小型集群到全局分布的事件。在这两种情况下,都已使用地面真实事件验证了位置准确性和不确定性估计。在本文中,我们介绍了贝叶斯洛克核心的概率方法,如何基于观察到的到达时间数据,基于区域和全球范围的案例研究,如何进行基于采样的后验推断,并讨论了贝叶斯洛克在局部距离和典型环境下的应用。地热储层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号