首页> 外文会议>AIChE annual meeting >Density Functional Theory Study of the Effect of 3d and 4d Transition Metals on NaMgH3 Complex Metal Hydride for Hydrogen Storage Applications
【24h】

Density Functional Theory Study of the Effect of 3d and 4d Transition Metals on NaMgH3 Complex Metal Hydride for Hydrogen Storage Applications

机译:储氢应用中3d和4d过渡金属对NaMgH3复合金属氢化物的影响的密度泛函理论研究

获取原文

摘要

In order to achieve the Hydrogen Economy, it is necessary to use hydrogen as an energy carrier. Hydrogen as an energy carrier is a possible solution to neutralize the climate changes occurred due to carbon emission. It is also highly attractive to ensure a smooth and efficient provision of energy without depending on other nations. Vehicles powered by fuel cells are one of the applications in which hydrogen can be used as an energy carrier. However, the absence of a commercially viable hydrogen storage technology is delaying the large-scale use of fuel cell powered vehicles. In order to promote research in this area, the U.S. Department of Energy (DoE) has set targets for the year 2010 and 2015 for a system of on board hydrogen storage. Previous results suggest that the addition of transition metals enhances the desorption kinetics of complex metal hydride and lowers the hydrogen dissociation temperature and activation energies.In the present work, study of catalytic additives with improved performance over Ti allows us to generalize the work on the procedure for 3d/4d doping in NaMgH3 and use it in systems with higher gravimetric densities and more favorable thermodynamics. For this purpose, plane wave density functional theory (PW-DFT) calculations helps us examine bulk and surface models of NaMgH3, Mg2FeH6 and KMgH3 complex metal hydride (CMHs) with impurities from the 3d element block. In this respect, first- principles calculations determined the cohesive energies of pure and doped bulk/surface CMHs as well as the adsorption/substitution energies. Furthermore, DFT coupled Molecular Dynamics (DFT-MD) calculations at elevated temperatures elucidate the effect of Ti placed on different sites on surface models. The results indicate that 5 out of 7 additives at the bulk model are thermodynamically stable relative to the pure model; therefore, possible. The most favorable elements in this regard came out to be; Ti, V, and Co in that order. Afterwards, from dynamics calculations performed at surface slab models, we conclude that Ti additives replacing sodium lattice sites and Ti additives placed at a four-fold vacant position are the stable arrangement in this system with potential formation of TiMgxHx complexes. Meanwhile, alloyed systems with 4d transition metals may be extremely stable for on-board hydrogen storage applications. Also, dynamics calculations performed at the surface slab models suggests that Ti additives replacing sodium lattice sites and Ti additives placed at a four-fold hollow site are the preferred, stable arrangements in NaMgH3 with possible formation of TiMgxHx complexes. This conclusion may serve as a guideline for the future design of nano-structured complex hydride for on-board hydrogen storage utilization.
机译:为了实现氢经济,必须使用氢作为能量载体。氢作为能量载体是中和由于碳排放而发生的气候变化的一种可能的解决方案。在不依赖其他国家的情况下,确保平稳高效地提供能源也极具吸引力。由燃料电池驱动的车辆是其中氢可以用作能量载体的应用之一。然而,缺乏商业上可行的氢存储技术正在延迟以燃料电池为动力的车辆的大规模使用。为了促进这一领域的研究,美国能源部(DoE)为船上储氢系统设定了2010年和2015年的目标。先前的结果表明,添加过渡金属可增强复合金属氢化物的解吸动力学,并降低氢的离解温度和活化能。 在当前的工作中,对性能优于Ti的催化添加剂的研究使我们能够概括在NaMgH3中进行3d / 4d掺杂的程序,并将其用于具有更高重量密度和更有利的热力学的系统中。为此,平面波密度泛函理论(PW-DFT)计算有助于我们检查NaMgH3,Mg2FeH6和KMgH3复杂金属氢化物(CMHs)的体模型和表面模型,其中包含来自3d元素块的杂质。在这方面,第一性原理计算确定了纯的和掺杂的本体/表面CMH的内聚能以及吸附/取代能。此外,在高温下进行DFT耦合分子动力学(DFT-MD)计算可阐明表面模型上不同位置上放置的Ti的影响。结果表明,相对于纯模型,整体模型中7种添加剂中有5种具有热力学稳定性。因此,有可能。在这方面,最有利的因素是: Ti,V和Co按此顺序排列。然后,根据在表面平板模型上进行的动力学计算,我们得出结论,取代钠晶格位点的Ti添加剂和位于四倍空位的Ti添加剂在该系统中是稳定的排列,并可能形成TiMgxHx络合物。同时,含4d过渡金属的合金系统对于车载氢气存储应用可能非常稳定。而且,在表面平板模型上进行的动力学计算表明,替代Na晶格位点的Ti添加剂和置于四重空心位点的Ti添加剂是NaMgH3中首选的,稳定的排列方式,并可能形成TiMgxHx络合物。该结论可作为未来设计用于船上储氢的纳米结构复合氢化物的指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号