首页> 外文会议>2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers >A 660pW multi-stage temperature-compensated timer for ultra-low-power wireless sensor node synchronization
【24h】

A 660pW multi-stage temperature-compensated timer for ultra-low-power wireless sensor node synchronization

机译:660pW多级温度补偿定时器,用于超低功耗无线传感器节点同步

获取原文

摘要

Recent work in ultra-low-power sensor platforms has enabled a number of new applications in medical, infrastructure, and environmental monitoring. Due to their limited energy storage volume, these sensors operate with long idle times and ultra-low standby power ranging from 10s of nW down to 100s of pW [1–2]. Since radio transmission is relatively expensive, even at the lowest reported power of 0.2mW [3], wireless communication between sensor nodes must be performed infrequently. Accurate measurement of the time interval between communication events (i.e. the synchronization cycle) is of great importance. Inaccuracy in the synchronization cycle time results in a longer period of uncertainty where sensor nodes are required to enable their radios to establish communication (Fig. 2.7.1), quickly making radios dominate the energy budget. Quartz crystal oscillators and CMOS harmonic oscillators exhibit very small sensitivity to supply voltage and temperature [4] but cannot be used in the target application space since they operate at very high frequencies and exhibit power consumption that is several orders of magnitude larger (>300nW) than the needed idle power. A gate-leakage-based timer was proposed [5] that leveraged small gate leakage currents to achieve power consumption within the required budget (< 1nW). However, this timer incurs high RMS jitter (1400ppm) and temperature sensitivity (0.16%/ºC). A 150pW program-and-hold timer was proposed [6] to reduce temperature sensitivity but its drifting clock frequency limits its use for synchronization. The quality of a timer is not captured well by RMS jitter since it ignores the averaging of jitter over multiple timer clock periods in a single synchronization cycle. Instead, we propose the uncertainty in a single synchronization cycle of length T as new metric and use this synchronization uncertainty (SU) to evaluate different timer approaches. The timer period is a random variable X(n), w--ith mean and sigma, μ and σ. Given a synchronization cycle time T, consisting of N timer periods, we define SU as the standard deviation of T as given by √T/μ × σ, assuming X(n) is Gaussian. Note that a smaller clock period increases N and results in more averaging and a lower SU with fixed jitter (σ/μ).
机译:超低功耗传感器平台的最新工作已在医疗,基础设施和环境监控领域实现了许多新应用。由于它们的能量存储量有限,因此这些传感器在较长的空闲时间和超低待机功耗(从10nW到100s pW的范围内)下运行[1-2]。由于无线电传输相对昂贵,即使报告的最低功率为0.2mW [3],传感器节点之间的无线通信也必须很少执行。准确测量通信事件之间的时间间隔(即同步周期)非常重要。同步周期时间的不准确性会导致更长的不确定性,在此期间,需要传感器节点才能使其无线电建立通信(图2.7.1),从而迅速使无线电成为能源预算的主导。石英晶体振荡器和CMOS谐波振荡器对电源电压和温度的灵敏度非常低[4],但由于它们以很高的频率工作并且功耗要大几个数量级(> 300nW),因此无法在目标应用空间中使用。超过所需的闲置功率。提出了一种基于门泄漏的计时器[5],该计时器利用小门泄漏电流在所需预算(<1nW)内实现功耗。但是,此计时器会产生高RMS抖动(1400ppm)和温度灵敏度(0.16%/ºC)。提出了一个150pW的程序保持计时器[6],以降低温度敏感性,但其漂移时钟频率限制了其用于同步的用途。 RMS抖动无法很好地捕获计时器的质量,因为它忽略了单个同步周期中多个计时器时钟周期内抖动的平均值。相反,我们将长度为T的单个同步周期中的不确定性作为新度量提出,并使用此同步不确定性(SU)评估不同的计时器方法。计时器周期是随机变量X(n),w- -- 均值和西格玛,μ和σ。给定一个由N个定时器周期组成的同步周期时间T,我们将SU定义为T的标准偏差,由√T/μ×σ给出,假设X(n)为高斯。请注意,较小的时钟周期会增加N并导致更多的平均化,并且具有固定抖动(σ/μ)的SU较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号