首页> 外文会议>ASME biennial conference on engineering systems design and analysis;ESDA2010 >MULTI-OBJECTIVE OPTIMAL DESIGN OF A PASSENGER CAR'S BODY
【24h】

MULTI-OBJECTIVE OPTIMAL DESIGN OF A PASSENGER CAR'S BODY

机译:客车车身的多目标优化设计

获取原文

摘要

The body of a passenger car roughly constitutes 25-30% of its overall weight. Any reduction in the weight of the car's body would not only mean less materials and fuel to be consumed, but also less exhaust emissions to be released and less non-biodegradable materials to be dumped or recycled. However, the automotive industry's desire for an increasing weight reduction of passenger cars is inevitably limited by other design considerations such as mechanical strength, overall stiffness of the body, durability, safety and corrosion resistance.The problem of weight minimization can be expressed in the form of a constrained, multi-objective optimization problem in which the weight of the body and its fatigue life constitute the conflicting cost functions and values of such critical performance parameters as body's natural frequency forms the constraint set.The above optimization problem poses a challenge to the designer, as the weight, fatigue life and natural frequency of the geometrically complex body cannot be readily evaluated and a comprehensive numerical model, such as a Finite-Elements (FE) one, has to be employed. This numerical model would nonetheless be highly time-consuming, especially considering the need for re-assessing the model dozens, and sometimes hundreds, of times per iteration of the optimization algorithm. To avoid this, we use a neural approximation of the FE model to reduce the time and computational cost. Results of a finite number of FE simulations are used to train the Multi-Layer Perceptron (MLP) neural network which will then be used as the evaluation engine of the optimization algorithm.An efficient computer code based on the improved Non-dominated Sorting Genetic Algorithms (NSGA II) is used to find the Pareto set of distinct solutions. The designer would then be able to choose from a set of non-dominated, feasible solutions based on economical and/or logistics requirements at an early stage of the design process.
机译:乘用车的车身约占其总重量的25%至30%。减轻汽车车身的重量,不仅意味着将减少消耗的材料和燃料,而且还将减少排放的废气排放量以及将要倾倒或回收的不可生物降解材料。但是,汽车行业对增加乘用车重量减轻的期望不可避免地受到其他设计考虑因素的限制,例如机械强度,车身的整体刚度,耐用性,安全性和耐腐蚀性。 重量最小化的问题可以用约束的多目标优化问题的形式表示,其中,体重及其疲劳寿命构成了相互矛盾的成本函数,而关键性能参数的值(如人体的自然频率构成了约束)放。 上述优化问题对设计人员构成了挑战,因为几何复杂物体的重量,疲劳寿命和固有频率无法轻易评估,因此必须采用诸如有限元(FE)这样的综合数值模型。 。但是,此数值模型将非常耗时,尤其是考虑到需要对优化算法的每次迭代重新评估模型数十次,有时甚至数百次。为了避免这种情况,我们使用有限元模型的神经近似来减少时间和计算成本。有限数量的有限元模拟的结果用于训练多层感知器(MLP)神经网络,然后将其用作优化算法的评估引擎。 基于改进的非支配排序遗传算法(NSGA II)的高效计算机代码可用于找到不同解的Pareto集。然后,设计人员可以在设计过程的早期阶段,根据经济和/或物流要求从一组非支配的可行解决方案中进行选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号